DOI QR코드

DOI QR Code

Electrochemical Properties of Dye-sensitized Solar Cells Using the TiO2 Prepared by Hydrothermal Reaction

수열합성한 TiO2 분말을 이용한 염료감응형 태양전지의 전기화학적 특성

  • Na, Byung-Hee (Department of Electrical Engineering, Chonnam National University) ;
  • Zhao, Xing Guan (Department of Electrical Engineering, Chonnam National University) ;
  • Gu, Hal-Bon (Department of Electrical Engineering, Chonnam National University)
  • 나병희 (전남대학교 전기공학과) ;
  • ;
  • 구할본 (전남대학교 전기공학과)
  • Received : 2013.10.24
  • Accepted : 2013.11.20
  • Published : 2014.01.01

Abstract

In this work, according to temperature and time of hydrothermal synthesis, the electrochemical properties of $TiO_2$ particle using TTIP based on changing temperature and time in the hydrothermal synthesis were analyzed and optimized temperature and time were derived. When hydrothermal synthesis temperature and time were $200^{\circ}C$ and 1 h, respectively. The fabricated DSSC delivered the best electrochemical properties. In that case, $TiO_2$ particle size was 13.08 nm, electron transport time was $2.34{\times}10^{-3}s$ and recombination time was $4.01{\times}10^{-2}s$. The lowest impedance of $13.52{\Omega}$ and Voc, Jsc, FF is 0.70 V, $1.50mAcm^{-2}$, 65.62%, respectively and corresponding efficiency of 5.34% was considered as the optimal.

Keywords

References

  1. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. K. H. Park, E. M. Jin, H. B. Gu, S. E. Shim, and C. K. Hong, Mater. Lett., 63, 2208 (2009). https://doi.org/10.1016/j.matlet.2009.07.034
  3. M. Gratzel, Nature, 414, 338 (2011).
  4. E. M. Jin, K. H. Park, J. J. Yun, C. K. Hong, M. J. Hwang, B. K. Park, K. W. Kim, and H. B. Gu, Surface Rev. Lett., 17, 15 (2010). https://doi.org/10.1142/S0218625X10013576
  5. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  6. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeereddin, and M. Gratzel, Science, 334, 629 (2011). https://doi.org/10.1126/science.1209688
  7. R. Katoh, A. Furube, M. Murai, Y. Tamaki, K. Jara, and M. Tachiya, C. R. Chimie, 9, 639 (2006). https://doi.org/10.1016/j.crci.2005.05.017
  8. A. R. Park, E. M. Jin, and H. B. Gu, J. KIEEME, 25, 315 (2012).
  9. E. M. Jin, X. G. Zhao, J. Y. Park, and H. B. Gu, Nano. Res. Lett., 7, 97 (2012). https://doi.org/10.1186/1556-276X-7-97
  10. C. Y. Huang, Y. C. Hsu, J. G. Chen, V. Suryanarayanan, K. M. Lee, and K. C. Ho, Sol, Energ. Mat. Sol. C, 90, 2391 (2006). https://doi.org/10.1016/j.solmat.2006.03.012
  11. J. S. Im, S. K. Lee, and Y. S. Lee, Appl. Chem. Eng., 22, 461 (2011).
  12. X. G. Zhao, E. M. Jin, and H. B. Gu, Appl. Surf. Sci., 287, 8 (2013). https://doi.org/10.1016/j.apsusc.2013.09.017