DOI QR코드

DOI QR Code

Safety factor calibration for bridge concrete girders

  • Silva, Rita C. (Faculty UnB Gama, Complexo de Educacao, University of Brasilia) ;
  • Cremona, Christian (Directorate for Research and Innovation, Ministry of Ecology, Energy, Sustainable Development and Sea)
  • Received : 2012.04.22
  • Accepted : 2013.12.09
  • Published : 2014.01.25

Abstract

Safety factors proposed in codes CEB, B.A.E.L 91 and EUROCODE 1 cover a great number of uncertainties; making them inadequate for the assessment of existing structures. Suitable safety factors are established using a probabilistic assessment, once real dimensions, materials strength and existing structures deterioration mechanisms are taken into account. This paper presents a calibration method for safety factors using a typical set of RC bridges in France. It considers the principal stages of corrosion provoked by $CO_2$ and $Cl^-$ penetration and threshold indexes (${\beta}_0$) for existing structures. Reliability indexes are determined by the FORM method in the calibration method.

Keywords

References

  1. AFGC (2004), Conception des Betons pour une Duree de Vie Donnee des Ouvrages - Mailrise de la Durabilite vis-a-vis de la COJTosion des Armatures et de l 'Alcali-Reaction, Association Franyaise de Genie Civil. (in French)
  2. Andrade, C., Alonso, C. and Molina, F.J. (1993), "Cover cracking as a function of bar corrosion: Part 1 - experimental test", Mater. Struct., 26(162), 453-464. https://doi.org/10.1007/BF02472805
  3. B.A.E.L 91 modifiees 99 (2000), Regles Techniques de Conception et de Calcul des Ouvrages et Constructions en Beton Arme suivant la Methode des Etats-Limites, Eyrolles. (in French)
  4. BD 79 Higway Agency (2001), Level 4 and Level 5 Methods of Assessmentfor Bridges.
  5. Calgaro, J.A. (1996), Introduction aux Eurocodes - Securite des Constructions et Bases de la Theorie de la Fiabilite, Presses de l'ecole nationale des ponts et chaussees. (in French).
  6. Catbas, F.N., Susoy, M. and Frangopol, D.M. (2008), "Structural healthy monitoring and reliability estimation: Long span truss bridge application with environmental monitoring data", Eng. Struct., 30(9), 2347-2359. https://doi.org/10.1016/j.engstruct.2008.01.013
  7. Circulaire $N^{\circ}$ 79-25, (1979), Instruction Techinique sur les Directives Communes de 1979 relatives au Calcul des Constructions (D.D.79), Marches Publics, Decision n.6-79 du groupe permanent d'etude des marches de travaux. (in French)
  8. Cui, H., Wang, H. and Zhang, L. (2011), "Safety management of reinforced concrete bridges in china and evaluation methods for strength of existint RC bridges with crack", Proceedings of International Conference on Multimedia Technology (ICMT), Hangshou, China.
  9. Czarnecki, A.A. and Nowak, A.S. (2008), "Time-variant reliability profiles for steel girder bridges", Struct. Safety, 30, 49-64. https://doi.org/10.1016/j.strusafe.2006.05.002
  10. EUROCODE 1 - ENV 1991-1 (1996), Norme Europeenne: Eucorode 1: Bases de calculs et Actions sur les Structures - Partie 1: bases de calcul, AFNOR (in French)
  11. Fascicule $N^{\circ}$ 61, Conception, Calcul et Epreuves des Ouvrages d'art, Titre II - Programmes de Charges et Epreuves des Ponts-Routes, Cahier des Prescriptions Communes Applicables aux Marches de Travaus Publics relevant des Sevices de l'equipement (in French).
  12. Ishida, T. and Maekawa, K. (2000), "Modelling of pH profile in pore water based on mass transport and chemical equilibrium theory", Translation from proceedings of Japan Society of Civil Engineering, May.
  13. Liu, Y. and Weyers, R.E. (1998), "Modelling the time-to-cracking in chloride contaminated reinforced concrete structure", ACI Mater. J., 95(6), 675-681.
  14. Melchers, R.E. (1999), Structural Reliability Analysis and Prediction, Wiley, UK.
  15. Papadakis, V.G., Vayenas, C.G. and Fardis, M.N. (1991a), "Experimental investigation and mathematical modelling of the concrete carbonation problem", Chem. Eng. Sci., 46(5/6) 1333-1338. https://doi.org/10.1016/0009-2509(91)85060-B
  16. Papadakis, V.G., Vayenas, C.G. and Fardis M.N. (1991b), "Fundamental modelling and experimental investigation of concrete carbonation", ACI Mater. J., 88(4), 363-373.
  17. Petryna, Y.S. and Kratzig, W.B. (2005), "Compliance-based structural damage measure and its sensitivity to uncertainties", Comput. Struct., 83(4), 1113-1133. https://doi.org/10.1016/j.compstruc.2004.11.020
  18. Sharifi, Y. and Paik, J.K. (2010), "Ultimate strength reliability analysis of corroded steel-box girder", Thin Wall. Struct., 49, 157-166.
  19. Silva, R. (2004), Contribution a l'Analyse Probabiliste de la Performance des Ponts en Beton Arme, Ouvrages d'art OA50, Laboratoire Central des Ponts et Chaussees. (in French)
  20. Silva, R. and Cremona, C. (2004a), "Some considerations on the performance cycle analysis of concrete girders in France", Struct. Infrastruct. Eng, 1(3), 207-220.
  21. Thoft-Christensen, P. (2000), "Modelling of deterioration of reinforced concrete structures", Reliability and optimization of structures systems, Proceedings of the ninths IFIP WG 7. 5 working conference on reliability and optimization of structural systems, Munich, Germany.
  22. Thomos, G.C. and Trezos, C.G. (2011), "Reliability based calibration of the capacity design rule of reinforced concrete beam-column joints", Comput. Concrete, 8(6), 631-645. https://doi.org/10.12989/cac.2011.8.6.631
  23. Val, D.V., Stewart, M.G. and Melchers, R.E. (1998), "Effect of reinforcement corrosion on reliability of highway bridges", Eng. Struct., 20(11), 1010-1019. https://doi.org/10.1016/S0141-0296(97)00197-1
  24. Vu Kim, A.T. and Stewart, M.G. (2000), "Structural reliability of concrete bridges including improved chloride-induced corrosion models", Struct. Saf., 22(3), 313-333. https://doi.org/10.1016/S0167-4730(00)00018-7
  25. Xiangyang, W. and Pei, Z. (2010), "Reliability analysis and life prediction of beam bridge base on more failure method", Proceedings of Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science, Hong Kong, August

Cited by

  1. Stochastic finite element based reliability analysis of steel fiber reinforced concrete (SFRC) corbels vol.15, pp.2, 2015, https://doi.org/10.12989/cac.2015.15.2.279