DOI QR코드

DOI QR Code

Characteristics for the Copper Exchange Reaction by Bentonite Buffer

벤토나이트 완충재의 구리치환 반응 특성

  • 이승엽 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 이지영 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 정종태 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 김경수 (한국원자력연구원 방사성폐기물처분연구부)
  • Received : 2014.12.04
  • Accepted : 2014.12.22
  • Published : 2014.12.30

Abstract

The bentonite, a buffer material, is essential for the deep geological disposal of HLW (high-level radioactive waste), and it is important to know its characteristic long-term evolution in the underground environment. With an assumption that the concentration of aqueous copper ions will increase if copper-coated materials on a metal canister are corroded, we examined some characteristic ion-exchanges and cation release phenomena occurring in the bentonite clay (montmorillonite) interacted with aqueous Cu cations. During the interaction between dissolved copper and bentonite, Na rather than Ca cations in the expandable clay were preferentially replaced by Cu ions in the experiment. In addition, the Cu-exchanged montmorillonite was characterized by an asymmetric X-ray diffracted pattern with relatively collapsed interlayers compared to the raw sample. These results indicate that the gradual change of the original bentonite property may occur in a underground disposal condition. We are going to further study the characteristic chemical and mineralogical changes of the bentonite buffer to be used for the disposal site by conducting additional experiments.

고준위폐기물의 심지층 처분을 위해 완충재인 벤토나이트가 반드시 필요하고, 지하 환경에서 이 물질의 장기적 특성 변화를 아는 것은 매우 중요하다. 본 실험에서 폐기물 금속용기의 구리코팅 성분이 부식되면서 구리이온 농도가 증가한다고 가정하였을 때, 완충재인 벤토나이트 점토(몬모릴로나이트)의 층간 양이온들의 이온교환 및 용출 특성 등을 실험을 통해 살펴보았다. 용존 구리와 벤토나이트와의 반응실험에서 팽창성 점토의 Na가 선택적으로 먼저 Cu에 의해 치환되었고 Ca는 상대적으로 시간을 두고 이온교환되었다. 그리고 구리로 치환된 몬모릴로나이트는 X-선회절 분석결과 원시료에 비해 층간간격이 다소 줄어든 특징적인 비대칭 회절형태로 관찰되었다. 이러한 실험결과는 지하처분조건에서 고유 벤토나이트 성질의 점진적인 변화를 간접적으로 지시하는 것으로, 향후 다양한 추가실험을 통해 처분장 완충재의 화학적 광물학적 특성 변화를 연구할 계획이다.

Keywords

References

  1. Akafia, M.M., Reich, T.J., and Koretsky, C.M. (2011) Assessing Cd, Co, Cu, Ni, and Pb sorption on montmorillonite using surface complexation models. Applied Geochemistry, 26, S154-157. https://doi.org/10.1016/j.apgeochem.2010.11.013
  2. Anjos, V.E., Rohwedder, J.R., Cadore, S., Abate, G., and Grassi, M.T. (2014) Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: Adsorption and desorption studies of As, Ba, Cu, Cd, Co, Cr, Mn, Ni, Pb, Sr, V, and Zn. Applied Clay Science, 99, 289-296. https://doi.org/10.1016/j.clay.2014.07.013
  3. Choi, H.J., Lee, J.Y., and Choi, J.W. (2013) Development of geological disposal systems for spent fuels and high-level radioactive wastes in Korea. Nuclear Engineering and Technology, 45, 29-40. https://doi.org/10.5516/NET.06.2012.006
  4. Grim, R.E. (1968) Clay mineralogy (2nd ed.), McGraw-Hill, London, 596p.
  5. Kim, G.Y., Kim, S.S., Choi, J.W., Park, S.W., and Bae, D.S. (2006) Measurements of the thermal conductivity of domestic bentonite for improving the physical performance of buffer. Journal of the Mineralogical Society of Korea, 19, 89-98. (in Korean with English abstract).
  6. Lee, J.O., Cho, W.J., and Kang, C.H. (2002) Effect of dry density on technetium diffusion in compacted bentonite. Environmental Engineering Research, 7, 219-225. https://doi.org/10.4491/eer.2002.7.4.219
  7. Lee, J.O. and Cho, W.J. (2009) Determination of water content in compacted bentonite using a hygrometer and its application. Journal of the Korean Radioactive Waste Society, 7, 101-107 (in Korean with English abstract).
  8. Lee, J.Y., Cho, D.K., Choi, H.J., and Choi, J.W. (2007) Concept of a Korean reference disposal system for spent fuels. Journal of Nuclear Science and Technology, 44, 1565-1573. https://doi.org/10.1080/18811248.2007.9711407
  9. Lee, J.Y., Lee, S.Y., Baik, M.H., and Jeong, J.T. (2013) Existence and characteristics of microbial cells in the bentonite to be used for a buffer material of high-level wastes. Journal of the Korean Radioactive Waste Society, 11, 95-102 (in Korean with English abstract). https://doi.org/10.7733/jkrws.2013.11.2.95
  10. Lee, M.S., Choi, H.J., Lee, J.Y., and Choi, J.W. (2012) Design, manufacturing, and performance estimation of a disposal canister for the ceramic waste from pyroprocessing. Journal of the Korean Radioactive Waste Society, 10, 209-218 (in Korean with English abstract). https://doi.org/10.7733/jkrws.2012.10.3.209
  11. Lee, S.Y. and Jeong, J. (2013) Corrosive characteristics of metal materials by a sulfate-reducing bacterium. Journal of the Mineralogical Society of Korea, 26, 219-228 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2013.26.4.219
  12. Masurat, P., Eriksson, S., and Pedersen, K. (2010) Microbial sulphide production in compacted Wyoming bentonite MX-80 under in situ conditions relevant to a repository for high-level radioactive waste. Applied Clay Science, 47, 58-64. https://doi.org/10.1016/j.clay.2009.01.004
  13. Noh, J.H. (2002) Mineralogical and petrochemical characteristics of domestic bentonites and their genetic significance. Journal of the Geological Society of Korea, 38, 441-455 (in Korean with English abstract).
  14. Oubagaranadin, J.U.K. and Murthy, Z.V.P. (2010) Isotherm modeling and batch adsorber design for the adsorption of Cu (II) on a clay containing montmorillonite. Applied Clay Science, 50, 409-413. https://doi.org/10.1016/j.clay.2010.09.008
  15. Rosborg, B., Pan, J., and Leygraf, C. (2005) Tafel slopes used in monitoring of copper corrosion in a bentonite/groundwater environment. Corrosion Science, 47, 3267-3279. https://doi.org/10.1016/j.corsci.2005.07.007
  16. Yim, S.P., Lee, J.H., Choi, H.J., Choi, J.W., and Lee, C.K. (2011) An investigation of diffusion of iodide ion in compacted bentonite containing $Ag_2O$. Journal of the Korean Radioactive Waste Society, 9, 33-40 (in Korean with English abstract). https://doi.org/10.7733/jkrws.2011.9.1.33
  17. Zhu, J., Cozzolino, V., Fernandez, M., Torres Sanchez, R.M., Pigna, M., Huang, Q., and Violante, A. (2011) Sorption of Cu on a Fe-deformed montmorillonite complex: Effect of pH, ionic strength, competitor heavy metal, and inorganic and organic ligands. Applied Clay Science, 52, 339-344. https://doi.org/10.1016/j.clay.2011.03.012

Cited by

  1. 지하수 용존 우라늄의 수착 및 침전 거동에서 수소 가스의 생지화학적 영향 vol.51, pp.2, 2014, https://doi.org/10.9719/eeg.2018.51.2.77