DOI QR코드

DOI QR Code

High Resolution Ocean Color Products Estimation in Fjord of Svalbard, Arctic Sea using Landsat-8 OLI

Landsat-8 OLI를 이용한 북극해 스발바드 피요르드의 고해상도 Ocean Color Product 산출

  • Kim, Sang-Il (Division of Polar Ocean Environment, Korea Polar Research Institute) ;
  • Kim, Hyun-Cheol (Division of Polar Ocean Environment, Korea Polar Research Institute) ;
  • Hyun, Chang-Uk (Division of Polar Ocean Environment, Korea Polar Research Institute)
  • 김상일 (극지연구소 극지해양환경연구부) ;
  • 김현철 (극지연구소 극지해양환경연구부) ;
  • 현창욱 (극지연구소 극지해양환경연구부)
  • Received : 2014.12.03
  • Accepted : 2014.12.23
  • Published : 2014.12.31

Abstract

Ocean Color products have been used to understand marine ecosystem. In high latitude region, ice melting optically influences the ocean color products. In this study, we assessed optical properties in fjord around Svalbard Arctic sea, and estimated distribution of chlorophyll-a and suspended sediment by using high resolution satellite data, Landsat-8 Operational Land Imager (OLI). To estimate chlorophyll-a and suspended sediment concentrations, various regression models were tested with different band ratio. The regression models were not shown high correlation because of temporal difference between satellite data and in-situ data. However, model-derived distribution of ocean color products from OLI showed a possibility that fjord and coastal areas around Arctic Sea can be monitored with high resolution satellite data. To understand climate change pattern around Arctic Sea, we need to understand ice meting influences on marine ecosystem change. Results of this study will be used to high resolution monitoring of ice melting and its influences on the marine ecosystem change at high latitude. KOPRI (Korea Polar Research Institute) has been operated the Dasan station on Svalbard since 2002, and study was conducted using Arctic station.

Ocean Color product들은 해양 생태계를 이해하기 위해 중요한 변수이다. 고위도 지역에서는 해빙이 바다로 유입되어 ocean color product에 광학적인 영향을 미친다. 본 연구에서는 북극 다산기지 근해의 피요르드에 대한 광학적 특성을 평가하고 높은 공간해상도를 가진 Landsat-8 OLI 영상의 엽록소-a(chlorophyll-a)와 부유물질(suspended sediment) 농도를 산출하고자 한다. 엽록소-a와 부유물질 농도를 추정하기 위해서 band ratio를 이용한 다양한 회귀 모델을 테스트했다. 위성영상과 관측된 실측 값과의 시간적인 차이 때문에 사용된 회귀모델은 높은 상관관계를 가지지는 못하였다. 하지만 Landsat-8 OLI 영상을 이용한 모델에서 생산된 엽록소-a와 부유물질 농도는 북극해 주변 피요르드와 해안지역에 대한 고해상도 위성 데이터를 활용한 모니터링 가능성을 보여주었다. 북극해 주변의 기후변화 패턴을 이해하기 위해서는 해양 생태계 변화에 ice meltig이 어떠한 영향을 미치는지를 이해하는 것이 필요하다. 본 연구의 결과는 고위도지역에서 ice melting이 해양생태계 변화에 미치는 영향을 고해상도로 모니터링을 하는데 사용된다. 극지연구소는 2002년부터 스발바드 다산기지을 운영하고 있으며 한국의 북극 기지를 기반으로 연구를 수행하였다.

Keywords

References

  1. Bilgehan, N., E. Semih, K. Hakan, B. Ali, and M. David, 2010. An Application of Landsat-5TM Image Data for Water Quality Mapping in Lake Beysehir, Turkey, Water Air Soil Pollut, 212: 183-197. https://doi.org/10.1007/s11270-010-0331-2
  2. Bilge, F., B. Yazici, T. Dogeroglu, and C. Ayday, 2003. Statistical evaluation of remotely sensed data for water quality monitoring, International Journal of Remote Sensing, 24: 5317-5326. https://doi.org/10.1080/0143116031000156828
  3. Cohen, W.B., T.K. Maiersperger, S.T. Gower, and D.P. Turner, 2003. An Improved strategy for regression of biophysical variables and Landsat ETM+ data, Remote Sensing of Environment, 84: 561-571. https://doi.org/10.1016/S0034-4257(02)00173-6
  4. Dekker, A.G., R.J. Vos, and S.W.M. Peters, 2002. Analytical algorithms for lake water TSM estimation for retrospective analysis of TM and SPOT sensor data, International Journal of Remote Sensing, 23: 15-35. https://doi.org/10.1080/01431160010006917
  5. Dekker, A.G., T.J. Malthus, and E. Seyhan, 1991. Quantitative modeling of inland water quality for high-resolution mss systems, IEEE Transactions on Geoscience and Remote Sensing, 29: 89-95. https://doi.org/10.1109/36.103296
  6. Giardino, C., V.E. Brando, A.G. Dekker, N. Strombeck, and G. Candiani, 2007. Assessment of water quality in Lake Garda (Italy) usingHyperion, Remote Sensing of Environment, 109: 183-195. https://doi.org/10.1016/j.rse.2006.12.017
  7. Gin, K.Y., S.T. Koh, and E.S. Chan, 2002. Application of spectral signatures and colour ratios to estimate chlorophyll in Singapore's coastal waters. Estuarine, Coastal and Shelf Science, 55: 719-728. https://doi.org/10.1006/ecss.2001.0926
  8. Han, L., 1997. Spectral reflectance with varying suspended sediment concentrations in clear and algal-laden waters, Photogrammetric Engineering and Remote Sensing, 63: 701-705.
  9. Han, L. and D.C. Rundquist, 1997. Comparison of NIR/Red ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: a case study in a turbid reservoir, Remote Sensing of Environment, 62: 253-261. https://doi.org/10.1016/S0034-4257(97)00106-5
  10. Han, L., D.C. Rundquist, L.L. Liu, and L.N. Fraser, 1994. The spectral responses of algal chlorophyll in water with varying levels of suspended sediment, International Journal of Remote Sensing, 15: 3707-3718. https://doi.org/10.1080/01431169408954353
  11. Harma, P., J. Vepsalainen, T. Hannonen, T. Pyhalahti, J. Kamari, and K. Kallio, 2001. Detection of water quality using simulated satellite data and semiempirical algorithms in Finland, Science of The Total Environment, 268: 107-121. https://doi.org/10.1016/S0048-9697(00)00688-4
  12. Jensen, J.R., 2005. Introductory Digital Image Processing, A Remote Sensing Perspective (Upper Saddle River, New Jersey: Prentice Hall).
  13. Svendsen, H., A. Beszczynska-Moller, J.O. Hagen, B. Lefauconnier, V. Tverberg, S. Gerland, J.B. Orbaek, K. Bischof, C. Papucci, M. Zajaczkowski, R. Azzolini, O. Bruland, C. Wiencke, J.G. Winther, and W. Dallmann, 2002. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard, Polar Research, 21(1): 133-166. https://doi.org/10.1111/j.1751-8369.2002.tb00072.x
  14. Wang, F., H. Luoheng, K. Hsiang-Te, and B.V.A. Roy, 2006. Applications of Landsat-5 TM imagery in assessing and mapping water quality in Reelfoot Lake, Tennessee, International Journal of Remote Sensing, 27(23): 5269-5283. https://doi.org/10.1080/01431160500191704
  15. Yang, X., 2005. Remote sensing and GIS for estuarine ecosystem analysis: an overview, International Journal of Remote Sensing, 26: 5347-5356. https://doi.org/10.1080/01431160500219406

Cited by

  1. Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea vol.187, pp.6, 2015, https://doi.org/10.1007/s10661-015-4616-1
  2. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques vol.16, pp.8, 2016, https://doi.org/10.3390/s16081298
  3. Spaceborne and airborne sensors in water quality assessment vol.37, pp.14, 2014, https://doi.org/10.1080/01431161.2016.1190477
  4. 한국의 극지 원격탐사 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.2.1
  5. 극지 해양환경 관측 및 고위도 해색 검보정을 위한 초분광 HyperSAS 자료구축 vol.34, pp.6, 2014, https://doi.org/10.7780/kjrs.2018.34.6.2.5
  6. Estimating Chlorophyll-a of Inland Water Bodies in Greece Based on Landsat Data vol.12, pp.13, 2014, https://doi.org/10.3390/rs12132087
  7. Land-Lake Linkage and Remote Sensing Application in Water Quality Monitoring in Lake Okeechobee, Florida, USA vol.10, pp.2, 2014, https://doi.org/10.3390/land10020147
  8. Evaluation of water quality based on UAV images and the IMP-MPP algorithm vol.61, pp.None, 2021, https://doi.org/10.1016/j.ecoinf.2021.101239