DOI QR코드

DOI QR Code

A Distributed Wireless Local Area Network (WLAN) Access Scheme for Efficient WLAN Communication in Busy Train Stations

혼잡 철도 역사에서 효율적인 무선랜 통신을 위한 무선랜 분산 접속 방법

  • Koh, Seoung-Chon (Department of Railway System, Seoul National University of Science and Technology) ;
  • Choi, Kyu-Hyoung (Department of Railway Electrical & Signaling Engineering, Seoul National University of Science and Technology) ;
  • Kim, Ronny Yongho (Department of Railroad Electrical and Electronics Engineering, Korea National University of Transportation)
  • Received : 2014.06.23
  • Accepted : 2014.09.04
  • Published : 2014.12.31

Abstract

Wireless local area network (WLAN) is a widely used wireless access method due to its easy usability and excellent performance. However, its performance degrades significantly as the number of users increases. In busy train stations, where the number of WLAN users are large and, more importantly the number of simultaneous packet transmission attempts is extremely large due to the time synchronization upon train arrival, the packet transmission delay problem is very severe and almost impossible for WLAN stations to initiate communication with WLAN networks. In this paper, a novel distributed WLAN access scheme for efficient WLAN communication in busy train stations is proposed. Using the proposed scheme, WLAN access delay can be significantly reduced under highly congested traffic environments. Therefore, a significant performance enhancement for the WLAN performance used in the Communication Based Train Control (CBTC) can be achieved.

무선랜은 그 사용의 편이성과 우수한 성능 때문에 널리 사용되고 있는 무선접속 방법의 하나이다. 하지만, 사용자가 많아지면 그 성능이 매우 열화 되는 단점이 있다. 혼잡 철도 역사에서는 무선랜에 접속하고자하는 사용자가 많고 특히 열차가 도착하여 승객이 하차할 시 무선랜에 동시 접속을 하려는 사용자의 수가 갑자기 증가하게 된다. 이러한 혼잡 상황에서는 무선랜과 통신을 개시하기 위한 망 접속절차를 수행할 수 없게 되어 무선랜과의 통신이 불가하게 된다. 이 논문에서는 혼잡 철도 역사 상황에서 사용자가 무선랜의 접속을 효과적으로 할 수 있는 무선랜 분산접속 방법을 제안한다. 제안한 방법을 사용하면 혼잡 상황에서 무선랜 접속에 소요되는 시간을 효과적으로 줄일 수 있게 되어 Communication Based Train Control (CBTC)에 사용하는 무선랜의 성능을 향상시킬 수 있다.

Keywords

References

  1. IEEE (2012) IEEE Standard for Local and Metropolitan Area Networks - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE Std 802.11-2012, March 29 2012.
  2. 3GPP TR 37.834 (2013) Technical Specification Group Radio Access Network; Study on Wireless Local Area Network (WLAN) - 3GPP radio interworking, V12.0.0, Dec. 2013.
  3. J.F. Jurose, K.W. Ross (2013) Computer Networking: A Top-Down Approach, 6th edition Addison-Wesley, pp. 539-570.
  4. E. Perahia, R. Stacey (2012) Next Generation Wireless LANs, 2nd edition Cambridge, pp. 271-274.
  5. T. Sakurai, H. L. Vu (2007) MAC Access Delay of IEEE 802.11 DCF, Wireless Commun., 6, pp. 1702-1710. https://doi.org/10.1109/TWC.2007.360372
  6. S.C. Kim (2012) Performance Analysis on the Impact of Mutual Interference and the Interference Suppression Method for CBTC System in the Presence of WPAN System, Journal of the Korean Society for Railway, 15(5), pp. 454-458. https://doi.org/10.7782/JKSR.2012.15.5.454
  7. J. Hastad, T. Leighton, B. Rogoff (1996) Analysis of backoff protocols for multiple access channels, SIAM J. Comput., 25, pp. 740-774. https://doi.org/10.1137/S0097539792233828
  8. M.M. Carvalho, J.J. Garcia-Luna-Aceves (2003) Delay analysis of IEEE 802.11 in single-hop networks, Proc. of 11th IEEE International Conference on Network Protocols (ICNP), Atlanta, pp. 146-155.
  9. H. Zhai, Y. Kwon, Y. Fang (2004) Performance analysis of IEEE 802.11 MAC protocols in wireless LANs, Wireless Commun. Mobile Comput., 4, pp. 917-931. https://doi.org/10.1002/wcm.263
  10. G. Bianchi (2000) Performance analysis of the IEEE 802.11 distributed coordination function, IEEE J. Sel. Areas Commun., 18, pp. 535-547. https://doi.org/10.1109/49.840210
  11. O. Tickoo, B. Sikdar (2004) Queueing analysis and delay mitigation in IEEE 802.11 random access MAC based Wireless Networks, Proc. IEEE INFOCOM 2004, pp. 1404-1413.
  12. H. Wu, Y. Peng, K. Long, S. Cheng, J. Ma (2002) Performance of reliable transport protocol over IEEE 802.11 wireless LAN: analysis and enhancement, Proc. IEEE INFOCOM 2002, pp. 599-607.
  13. B.J. Kwak, N.O. Song, L.E. Miller (2005) Performance analysis of exponential backoff, IEEE/ACM Trans. Networking, 13, pp. 343-355. https://doi.org/10.1109/TNET.2005.845533
  14. A. Kumar, E. Altman, D. Miorandi, M. Goyal (2005) New insights from a fixed point analysis of single cell IEEE 802.11 WLANs, Proc. IEEE INFOCOM 2005, pp. 1550-1561.
  15. T. Sakurai, H.L. Vu (2007) MAC access delay of IEEE 802.11 DCF, Wireless Commun., 6, pp. 1702-1710. https://doi.org/10.1109/TWC.2007.360372

Cited by

  1. Access Delay Characteristics of Wi-Fi Network According to User Increase in Subway Section vol.16, pp.5, 2015, https://doi.org/10.5762/KAIS.2015.16.5.3455