DOI QR코드

DOI QR Code

Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers

  • Wang, Yun-Che (Department of Civil Engineering, National Cheng Kung University) ;
  • Wu, Chun-Yi (Department of Civil Engineering, National Cheng Kung University) ;
  • Chen, Chi (Department of Civil Engineering, National Cheng Kung University) ;
  • Yang, Ding-Shen (Department of Civil Engineering, National Cheng Kung University)
  • Received : 2013.03.01
  • Accepted : 2013.05.05
  • Published : 2014.12.25

Abstract

In this work, quantum molecular dynamics simulations (QMD) are preformed to study the hydrogen molecules in three types of carbon nanostructures, $C_{60}$ fullerene, (5,5) and (9,0) carbon nanotubes and graphene layers. Interactions between hydrogen and the nanostructures is of importance to understand hydrogen storage for the development of hydrogen economy. The QMD method overcomes the difficulties with empirical interatomic potentials to model the interaction among hydrogen and carbon atoms in the confined geometry. In QMD, the interatomic forces are calculated by solving the Schrodinger's equation with the density functional theory (DFT) formulation, and the positions of the atomic nucleus are calculated with the Newton's second law in accordance with the Born-Oppenheimer approximation. It is found that the number of hydrogen atoms that is less than 58 can be stored in the $C_{60}$ fullerene. With larger carbon fullerenes, more hydrogen may be stored. For hydrogen molecules passing though the fullerene, a particular orientation is required to obtain least energy barrier. For carbon nanotubes and graphene, adsorption may adhere hydrogen atoms to carbon atoms. In addition, hydrogen molecules can also be stored inside the nanotubes or between the adjacent layers in graphite, multi-layer graphene.

Keywords

Acknowledgement

Supported by : National Science Council

References

  1. Averill, F.W., Morris, J.R. and Cooper, V.R. (2009), "Calculated properties of fully hydrogenated single layers of BN, BC2N, and graphene: graphene and its BN-containing analogues", Phys. Rev. B, 80, 195411. https://doi.org/10.1103/PhysRevB.80.195411
  2. Bockman, T.M., Hubig, S.M. and Kochi, J.K. (1996), "Direct observation of carbon-carbon bond cleavage in ultrafast decarboxylations", J. Am. Chem. Soc., 119, 4502-4503.
  3. Ding, F., Lin, Y., Krasnov, P.O. and Yakobson, B.I. (2007), "Nanotube-derived carbon foam for hydrogen sorption", J. Chem. Phys., 127, 164703. https://doi.org/10.1063/1.2790434
  4. Dodziuki, H. (2005), "Modeling complexes of H2 molecules in fullerenes", Chem. Phys. Lett., 410, 39-41. https://doi.org/10.1016/j.cplett.2005.05.038
  5. Dresselhaus, M.S., Dresselhaus, G. and Eklund, P.C. (1996), Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, CA, USA.
  6. Drexler, K.E. (1992), Nanosystems - Molecular Machinery, Manufacturing and Computation, John Wiley & Sons, New York, USA.
  7. Er, S., Wijs de, G.A. and Brocks, G. (2009), "Hydrogen storage by polylithiated molecules and nanostructures", J. Phys. Chem. C, 113(20), 8997-9002. https://doi.org/10.1021/jp901305h
  8. Holbrook, K.A., Pilling, M.J. and Robertson, S.H. (1996), Unimolecular Reactions, John Wiley & Sons, New York, USA.
  9. Kim, B.R., Pyo, S.H., Lemaire, G. and Lee, H.K. (2011), "Multiscale approach to predict the effective elastic behavior of nanoparticle-reinforced polymer composites", Interact. Multiscale Mech., 4, 173-185. https://doi.org/10.12989/imm.2011.4.3.173
  10. Kruse, H. and Grimme, S. (2009), "Accurate Quantum Chemical Description of Non-Covalent Interactions in Hydrogen Filled Endohedral Fullerene Complexes", J. Phys. Chem.C, 113, 17006-17010. https://doi.org/10.1021/jp904542k
  11. Labet, V., Gonzalez-Morelos, P., Hoffmann, R. and Ashcroft, N.W. (2012), "A fresh look at dense hydrogen under pressure. I. An introduction to the problem, and an index probing equalization of H-H distances", J. Chem. Phys., 136, 074501. https://doi.org/10.1063/1.3679662
  12. Lachawiec, A.J., Qi, G. and Yang, R.T. (2005), "Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement", Langmuir, 21, 11418-11424. https://doi.org/10.1021/la051659r
  13. Lee, T.B. and McKee, M.L. (2008), "Endohedral hydrogen exchange reactions in C60 (nH2@C60, n=1-5): comparison of recent methods in a high-pressure cooker", J. Am. Chem. Soc., 130, 17610-17619. https://doi.org/10.1021/ja8071868
  14. Li, R. and Sun, L.Z. (2011), "Dynamic mechanical analysis of silicone rubber reinforced with multi-walled carbon nanotubes", Interact. Multiscale Mech., 4, 239-245. https://doi.org/10.12989/imm.2011.4.3.239
  15. Li, Y. and Yang, R.T. (2006), "Significantly enhanced hydrogen storage in metal-organic frameworks via spillover", J. Am. Chem. Soc. JACS Commun., 128, 726-725. https://doi.org/10.1021/ja056831s
  16. Lin, Y., Ding, F. and Yakobson, B.I. (2008), "Hydrogen storage by spillover on graphene as a phase nucleation process", Phys. Rev. B, 78, 041402.
  17. Liu, W., Zhao, Y.H., Li, Y., Jiang, Q. and Lavernia, E.J. (2009), "Enhanced hydrogen storage on Li-dispersed carbon nanotubes", J. Phys. Chem. C, 113, 2028-2033. https://doi.org/10.1021/jp8091418
  18. Mattesini, M., Soler, J.M. and Yndurain, F. (2006), "Ab initio study of metal-organic framework-5 $Zn_4O(1,4-benzenedicarboxylate)_3$: an assessment of mechanical and spectroscopic properties", Phys. Rev. B, 73, 094111. https://doi.org/10.1103/PhysRevB.73.094111
  19. Miller, G.P., Kintigh, J., Kim, E., Weck, P.F., Berber, S. and Tomanek, D. (2008), "Hydrogenation of single-wall carbon nanotubes using polyamine reagents: combined experimental and theoretical study", J. Am. Chem. Soc., 130, 2296-2303. https://doi.org/10.1021/ja0775366
  20. Ni, M. (2013), "Methane carbon dioxide reforming for hydrogen production in a compact reformer - a modeling study", Adv. Energy Res., 1, 53-78. https://doi.org/10.12989/eri.2013.1.1.053
  21. Pupysheva, O.V., Farajian, A.A. and Yakobson, B.I. (2008), "Fullerene Nanocage Capacity for Hydrogen Storage", Nano Lett., 8, 767-774. https://doi.org/10.1021/nl071436g
  22. Salam, M.A., Sufian, S. and Lwin, Y. (2013), "Hydrogen adsorption study on mixed oxides using the density functional theory", J. Phys. Chem. Solids, 74, 558-564. https://doi.org/10.1016/j.jpcs.2012.12.004
  23. Shen, L. (2013), "Molecular dynamics study of Al solute-dislocation interactions in Mg alloys", Interact. Multiscale Mech., 6, 127-136. https://doi.org/10.12989/imm.2013.6.2.127
  24. Singh, A.K., Ribas, M.A. and Yakobson, B.I. (2009), "H-spillover through the catalyst saturation: an ab initio thermodynamics study", ACS Nano, 3, 1657-1662. https://doi.org/10.1021/nn9004044
  25. Sofo, J.O., Chaudhari, A.S. and Barber, G.D. (2007), "Graphane: a two-dimensional hydrocarbon", Phys. Rev. B, 75, 153401. https://doi.org/10.1103/PhysRevB.75.153401
  26. Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P. and Sanchez-Portal, D. (2002), "The SIESTA method for ab initio order-N materials simulation", J. Phys. Cond. Mat., 14, 2745-2779. https://doi.org/10.1088/0953-8984/14/11/302
  27. Stadie, N.P., Purewal, J.J., Ahn, C.C. and Fultz, B. (2010), "Measurements of hydrogen spillover in platinum doped superactived carbon", Langmuir, 26, 15481-15485. https://doi.org/10.1021/la9046758
  28. Strobel, R., Garche, J., Moseley, P.T., Jorissen, L. and Wolf, G. (2006), "Hydrogen storage by carbon materials", J. Power Sources, 159(2), 781-801. https://doi.org/10.1016/j.jpowsour.2006.03.047
  29. Tsetseris, L. and Pantelides, S.T. (2012), "Hydrogen uptake by graphene and nucleation of graphane", J. Mater. Sci., 47(21), 7571-7579. https://doi.org/10.1007/s10853-012-6447-6
  30. Tukerman, M.E. (2010), Statistical Mechanics: Theory and Molecular Simulation, Oxford University Press, Oxford, UK.
  31. Wang, Q., Sun, Q., Jena, P. and Kawazoe, Y. (2009), "Theoretical study of hydrogen storage in Ca-coated fullerenes", J. Chem. Theory Comput., 5, 374-379. https://doi.org/10.1021/ct800373g
  32. Wang, X. and Lee, J.D. (2011), "Heat resistance of carbon nanoonions by molecular dynamics simulation", Interact. Multiscale Mech., 4, 247-255. https://doi.org/10.12989/imm.2011.4.4.247
  33. Wen, X.D., Yang, T., Hoffmann, R., Ashcroft, N.W., Martin, R.L., Rudin, S.P. and Zhu, J.X. (2012), "Graphane nanotubes", ACS Nanos, 6, 7142-7150. https://doi.org/10.1021/nn302204b
  34. Wu, G., Wang, J., Zeng, X.C., Hu, H. and Ding, F. (2010), "Controlling cross section of carbon nanotubes via selective hydrogenation", J. Phys. Chem. C., 114, 11753-11757.

Cited by

  1. An analytical study on the nonlinear vibration of a double-walled carbon nanotube vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.987