DOI QR코드

DOI QR Code

Standard Process Design of Remanufacturing of LPG Vaporizer by using FMEA

FMEA를 이용한 LPG 기화기의 재제조 표준공정 설계

  • Mok, Hak-Soo (Department of Industrial Engineering, Pusan Univ.) ;
  • Song, Hyun-Su (Department of Industrial Engineering, Pusan Univ.) ;
  • Kim, Deuk-Jung (Department of Industrial Engineering, Pusan Univ.) ;
  • Hong, Jin-Eui (Department of Industrial Engineering, Pusan Univ.) ;
  • Lee, Seung-Min (Department of Industrial Engineering, Pusan Univ.) ;
  • Ahn, Jung-Tae (Department of Industrial Engineering, Pusan Univ.)
  • 목학수 (부산대학교 산업공학과) ;
  • 송현수 (부산대학교 산업공학과) ;
  • 김덕중 (부산대학교 산업공학과) ;
  • 홍진의 (부산대학교 산업공학과) ;
  • 이승민 (부산대학교 산업공학과) ;
  • 안정태 (부산대학교 산업공학과)
  • Received : 2014.11.07
  • Accepted : 2014.12.15
  • Published : 2014.12.31

Abstract

This paper present a improved process for remanufacturing of LPG vaporizer through Failure Mode and Effect Analysis(FMEA). Based on the failure causes analysis and classification of faults that occur after the initial failure of LPG vaporizer remanufacturing, suggests improvements for high R.P.N. Derive the improvement for higher cumulative frequency of each process, proposes the overall improvement of a current process for establish a standard LPG remanufacturing process.

본 논문에서는 LPG기화기의 재제조 공정 이후 발생할 수 있는 초기 고장에 대한 문제점을 최소화하기 위해, LPG 기화기의 동작 특성을 파악하고, 고장 분류를 통해 고장 현상에 따른 원인을 분석하였다. 또한, LPG 기화기의 재제조 단위 공정 및 부품에 대한 FMEA를 작성하였다. 각각의 단위 공정 및 부품에 대한 잠재적 고장 원인 및 고장 유형에 대한 심각도, 검출도, 발생도를 결정하고, R.P.N을 확인 후, 기준을 초과하는 공정 또는 부품에 대한 개선안을 제안하였다. 공정별 많은 누적빈도를 보이는 재제조 공정을 결정하고, 포괄적 개선안을 제시함으로써, LPG기화기의 표준공정을 설계하기 위한 개선안을 제안한다.

Keywords

References

  1. Mok, H. S., et al., 2011:Remanufacturing Industry for Automobile Parts of European, Transactions of KSAE, 19(1), pp.38-44
  2. Mok, H. S., et al, 2010:Remanufacturing Industry for Automobile Parts of USA, Journal of Korea Society for Precision Engineering, 27(3), pp.58-65
  3. Act No. 12154, 2014:ACT ON THE PROMOTION OF THE CONVERSION INTO ENVIRONMENTFRIENDLY INDUSTRIAL STRUCTURE, Ministry of Trade, Industry and Energy, Article 2
  4. KS A 3112, 2007:Failure Reporting, Analysis and Corrective Action System
  5. MIL-STD-721C, 1981:Definitions of Terms for Reliability and Maintainability
  6. Roesch, W. J., 2012:Using a new bathtub curve to correlate quality and reliability, Microelectronics Reliability, 52(12), pp.2864-2869 https://doi.org/10.1016/j.microrel.2012.08.022
  7. Omdahl, T. P., 1988:Reliability, availability, and maintainability (RAM) dictionary, ASQC Quality press
  8. MIL-STD-1629A, 1980:Procedures for Performing a Failure Mode, Effects and Criticality Analysis
  9. KS A IEC 60812, 2003:Failure Mode and Effects Analysis
  10. Bahrami, M., Bazzaz, D. H., Sajjadi, S. M., 2012 : Innovation and improvements in project implementation and management; using FMEA technique Procedia-Social and Behavioral Sciences, 41, pp.418-425 https://doi.org/10.1016/j.sbspro.2012.04.050
  11. Chang, D., Sun, K., 2009:Applying DEA to enhance assessment capability of FMEA, International Journal of Quality & Reliability Management, 26(6), pp.629-643 https://doi.org/10.1108/02656710910966165
  12. Kim, J. H., et al., 2008:Design for Reliability of Air-Launching Rocket, Mirinae II Using FMEA, JKSASS, 36(12), pp.1193-1200
  13. Kolich, M., 2014:Using Failure Mode and Effects Analysis to design a comfortable automotive driver seat, Applied ergonomics 45(4), pp.1087-1096 https://doi.org/10.1016/j.apergo.2014.01.007
  14. Franceschini, F., Maurizio, G., 2001:A new approach for evaluation of risk priorities of failure modes in FMEA, International Journal of Production Research 39(13), pp.2991-3002 https://doi.org/10.1080/00207540110056162

Cited by

  1. 신발의 재활용을 고려한 비즈니스 모델 vol.26, pp.5, 2017, https://doi.org/10.7844/kirr.2017.26.5.105
  2. Remanufacturing Technology Development of Industrial Hydraulic Cylinder vol.27, pp.6, 2018, https://doi.org/10.7735/ksmte.2018.27.6.539