참고문헌
- P. Agrawal and P. Kumar, Comparison of five numerical schemes for fractional differential equations, Advances in fractional calculus, 43-60, Springer, Dordrecht, 2007.
- W. M. Ahmad and R. EL-Khazali, Fractional-order dynamical models of love, Chaos Solitons Fractals 33 (2007), no. 4, 1367-1375. https://doi.org/10.1016/j.chaos.2006.01.098
- P. Baratella and A. Orsi, A new approach to the numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math. 163 (2004), no. 2, 401-418. https://doi.org/10.1016/j.cam.2003.08.047
- A. H. Bhrawy and M. A. Alghamdi, A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals, Bound. Value Probl. 1 (2012), no. 62, 1-13.
- A. H. Bhrawy and A. S. Alofi, The operational matrix of fractional integration for shifted Chebyshev polynomials, Appl. Math. Lett. 26 (2013), no. 1, 25-31. https://doi.org/10.1016/j.aml.2012.01.027
- A. H. Bhrawy and M. Alshomrani, A shifted Legendre spectral method for fractional-order multi-point boundary value problems, Advan Differ Eqs. 2012 (2012), 1-8. https://doi.org/10.1186/1687-1847-2012-1
- A. H. Bhrawy, A. S. Alofi, and S. S. Ezz-Eldien, A quadrature tau method for fractional differential equations with variable coefficients, Appl. Math. Lett. 24 (2011), no. 12, 2146-2152. https://doi.org/10.1016/j.aml.2011.06.016
- A. H. Bhrawy, M. M. Tharwat, and A. Yildirim, A new formula for fractional integrals of Chebyshev polynomials: Application for solving multi-term fractional differential equations, Appl. Math. Model. 37 (2013), no. 6, 4245-4252. https://doi.org/10.1016/j.apm.2012.08.022
- C. Canuto, M. Y. Hussaini, and A. Quarteroni, Spectral Methods, Fundamentals in single domains, Springer-Verlag, Berlin, 2006.
- Y. Chen and T. Tang, Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equation with a weakly singular kernel, Math. Comp. 79 (2010), no. 269, 147-167. https://doi.org/10.1090/S0025-5718-09-02269-8
- D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, Heidelberg, 2nd Edition, 1998.
- E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl. Math. Model. 35 (2011), no. 12, 5662-5672. https://doi.org/10.1016/j.apm.2011.05.011
- E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldie, A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl. 62 (2011), no. 5, 2364-2373. https://doi.org/10.1016/j.camwa.2011.07.024
- E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldie, A new Jacobi operational matrix: an application for solving fractional differential equations, Appl. Math. Model. 36 (2012), no. 10, 4931-4943. https://doi.org/10.1016/j.apm.2011.12.031
- J. H. He, Nonlinear oscillation with fractional derivative and its applications, In: International Conference on Vibrating Engineering, Dalian, China, 1998, 288-291.
- J. H. He, Some applications of nonlinear fractional differential equations and therir approximations, Bull.Sci. Technol. 15 (1999), 86-90.
- D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, 1989.
- F. Huang and F. Liu, The time fractional diffusion equation and the advection-dispersion equation, ANZIAM J. 46 (2005), 317-330. https://doi.org/10.1017/S1446181100008282
- H. Jafari and S. A. Yousefi, Application of Legendre wavelets for solving fractional differential equations, Comput. Math. Appl. 62 (2011), no. 3, 1038-1045. https://doi.org/10.1016/j.camwa.2011.04.024
- M. M. Khader and A. S. Hendy, An efficient numerical scheme for solving fractional optimal control problems, Int. J. Nonlinear Sci. 14 (2012), no. 3, 287-297.
- M. M. Khader, N. H. Sweilam, and A. M. S. Mahdy, An efficient numerical method for solving the fractional diffusion equation, J. Appl. Math. Bioinf. 1 (2011), no. 2, 1-12.
- A. Kufner and L. E. Persson, Weighted Inequalities of Hardy Type, World Scientific, New York, 2003.
- Y. L. Li, Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput. 216 (2010), no. 8, 2276-2285. https://doi.org/10.1016/j.amc.2010.03.063
- Y. Luchko and R. Gorenflo, The initial value problem for some fractional differential equations with the Caputo derivatives, Preprint series A08-98, Fachbreich Mathematik und Informatik, Freic Universitat Berlin, 1998.
- F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics (Udine, 1996), 291-348, CISM Courses and Lectures, 378, Springer, Vienna, 1997.
- G. Mastroianni and D. Occorsto, Optimal systems of nodes for Lagrange interpolation on bounded intervals: a survey, J. Comput. Appl. Math. 134 (2001), no. 1-2, 325-341. https://doi.org/10.1016/S0377-0427(00)00557-4
- P. Nevai, Mean convergence of Lagrange interpolation. III, Trans. Amer. Math. Soc. 282 (1984), no. 2, 669-698. https://doi.org/10.1090/S0002-9947-1984-0732113-4
- A. Pedas and E. Tamme, Piecewise polynomial collocation for linear boundary value problems of fractional differential equations, J. Comput. Appl. Math. 236 (2012), no. 13, 3349-3359. https://doi.org/10.1016/j.cam.2012.03.002
- I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
- D. L. Ragozin, Polynomial approximation on compact manifolds and homogeneous spaces, Trans. Amer. Math. Soc. 150 (1970), 41-53. https://doi.org/10.1090/S0002-9947-1970-0410210-0
- D. L. Ragozin, Constructive polynomial approximation on spheres and projective spaces, Trans. Amer. Math. Soc. 162 (1971), 157-170.
- E. A. Rawashdeh, Legendre wavelets method for fractional integro-differential equations, Appl. Math. Sci. 5 (2011), no. 49-52, 2467-2474.
- E. A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput. 176 (2006), no. 1, 1-6. https://doi.org/10.1016/j.amc.2005.09.059
- M. Rehman and R. A. Khan, The Legendre wavelet method for solving fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 11, 4163-4173. https://doi.org/10.1016/j.cnsns.2011.01.014
- A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl. 59 (2010), no. 3, 1326-1336. https://doi.org/10.1016/j.camwa.2009.07.006
- A. Saadatmandi and M. Dehghan, A Legendre collocation method for fractional integro-differential equations, J. Vib. Control 17 (2011), no. 13, 2050-2058. https://doi.org/10.1177/1077546310395977
- G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon & Breach, Yverdon, 1993.
- N. T. Shawagfeh, Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput. 131 (2002), no. 2-3, 517-529. https://doi.org/10.1016/S0096-3003(01)00167-9
- N. H. Sweilam and M. M. Khader, A Chebyshev pseudo-spectral method for solving fractional-order integro-differential equations, ANZIAM J. 51 (2010), no. 4, 464-475. https://doi.org/10.1017/S1446181110000830
- N. H. Sweilam, M. M. Khader, and R. F. Al-Bar, Homotopy perturbation method for linear and nonlinear system of fractional integro-differential equations, Int. J. Comput. Math. Numer. Simul. 1 (2008), no. 1, 73-87.
- Y. Wei and Y. Chen, Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions, Adv. Appl. Math. Mech. 4 (2012), no. 1, 1-20. https://doi.org/10.4208/aamm.10-m1055
피인용 문헌
- Spectral-Collocation Method for Volterra Delay Integro-Differential Equations with Weakly Singular Kernels vol.8, pp.04, 2016, https://doi.org/10.4208/aamm.2015.m1088
- Spectral Collocation Methods for Nonlinear Volterra Integro-Differential Equations with Weakly Singular Kernels 2019, https://doi.org/10.1007/s40840-017-0487-7
- New Solutions for System of Fractional Integro-Differential Equations and Abel’s Integral Equations by Chebyshev Spectral Method vol.2017, 2017, https://doi.org/10.1155/2017/7853839
- Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis vol.73, pp.6, 2017, https://doi.org/10.1016/j.camwa.2016.08.017
- Numerical Solution of Euler-Lagrange Equation with Caputo Derivatives vol.9, pp.01, 2017, https://doi.org/10.4208/aamm.2015.m970
- Numerical Solution of Fractional Integro-Differential Equations by Least Squares Method and Shifted Chebyshev Polynomial vol.2014, 2014, https://doi.org/10.1155/2014/431965
- Numerical solutions for solving time fractional Fokker–Planck equations based on spectral collocation methods 2017, https://doi.org/10.1016/j.cam.2017.04.003
- Numerical simulation of time fractional Cable equations and convergence analysis vol.34, pp.5, 2017, https://doi.org/10.1002/num.22225
- A Numerical Method for Solving a Class of Nonlinear Second Order Fractional Volterra Integro-Differntial Type of Singularly Perturbed Problems vol.6, pp.4, 2018, https://doi.org/10.3390/math6040048