Evaluation of Every Other Day - Cone Beam Computed Tomography in Image Guided Radiation Therapy for Prostate Cancer

전립선암의 영상유도방사선치료 시 격일 콘빔 CT 적용의 유용성 평가

  • Park, Byoung Suk (Department of Radiation Oncology, Samsung medical center) ;
  • Ahn, Jong Ho (Department of Radiation Oncology, Samsung medical center) ;
  • Kim, Jong Sik (Department of Radiation Oncology, Samsung medical center) ;
  • Song, Ki Won (Department of Radiation Oncology, Samsung medical center)
  • 박병석 (삼성서울병원 방사선종양학과) ;
  • 안종호 (삼성서울병원 방사선종양학과) ;
  • 김종식 (삼성서울병원 방사선종양학과) ;
  • 송기원 (삼성서울병원 방사선종양학과)
  • Received : 2014.11.14
  • Accepted : 2014.12.02
  • Published : 2014.12.30

Abstract

Purpose : Cone Beam Computed Tomography(CBCT) in Image Guided Radiation Therapy(IGRT), Set-up error can be reduced but exposure dose of the patient due to CBCT will increase. Through this study, we are to evaluate by making a scenario with the implementation period of CBCT as every other day. Materials and Methods : Of prostate cancer patients, 9 patients who got a Intensity Modulated Radiation Therapy(IMRT) with CBCT in IGRT were analyzed. Based on values corrected by analyzing set-up error by using CBCT every day during actual treatment, we created a scenario that conducts CBCT every other day. After applying set-up error values of the day not performing CBCT in the scenario to the treatment planning system(Pinnacle 9.2, Philips, USA) by moving them from the treatment iso-center during actual treatment, we established re-treatment plan under the same conditions as actual treatment. Based on this, the dose distribution of normal organs and Planning Target Volume(PTV) was compared and analyzed. Results : In the scenario that performs CBCT every other day based on set-up error values when conducting CBCT every day, average X-axis : $0.2{\pm}0.73mm$, Y-axis : $0.1{\pm}0.58mm$, Z-axis : $-1.3{\pm}1.17mm$ difference was shown. This was applied to the treatment planning to establish re-treatment plan and dose distribution was evaluated and as a result, Dmean : -0.17 Gy, D99% : -0.71 Gy of PTV difference was shown in comparison with the result obtained when carrying out CBCT every day. As for normal organs, V66 : 1.55% of rectal wall, V66 : -0.76% of bladder difference was shown. Conclusion : In case of a CBCT perform every other day could reduce exposure dose and additional treatment time. And it is thought to be able to consider the application depending on the condition of the patient because the difference in the dose distribution of normal organs, PTV is not large.

목 적 : 영상유도방사선치료 시 사용하는 콘빔 CT는 치료자세 오차를 확인하는 중요한 수단이지만 피폭선량을 증가 시키는 단점이 있다. 이에 본 연구는 콘빔 CT의 시행주기를 격일로 하는 시나리오를 만들어 유용성을 평가하고자 한다. 대상 및 방법 : 콘빔 CT를 이용하여 세기변조방사선치료를 받은 전립선암 환자 9명을 대상으로 실제 치료 시 매일 콘빔 CT로 치료자세 오차를 분석하여 보정한 값을 바탕으로 격일로 콘빔 CT를 시행하는 시나리오를 만들었다. 시나리오에서 콘빔 CT를 시행하지 않은 날의 치료자세 오차 값을 실제 치료 시의 치료중심점에서 이동하여 치료계획시스템(Pinnacle 9.2, Philips, USA)에 적용한 후 실제 치료와 동일한 조건으로 재 치료계획을 수립하였으며, 이를 바탕으로 PTV(Planning Target Volume)와 정상장기의 선량분포를 비교 분석하였다. 결 과 : 매일 콘빔 CT를 시행하였을 때의 치료자세 오차 값을 기준으로 격일로 콘빔 CT를 시행하는 시나리오에서는 X, Y, Z축으로 각각 $0.2{\pm}0.73mm$, $0.1{\pm}0.58mm$, $-1.3{\pm}1.17mm$ 차이가 나타났다. 이를 치료계획에 적용하여 재 치료계획을 수립하여 선량분포를 평가한 결과는 매일 콘빔 CT를 시행한 결과와 비교하여 PTV의 Dmean : -0.17 Gy, $D_{99%}$ : -0.71 Gy, 차이가 나타났다. 정상 장기는 직장 벽의 $V_{66}$ : 1.55%, 방광의 $V_{66}$ : -0.76% 차이가 나타났다. 결 론 : 격일로 콘빔 CT를 시행하였을 경우 콘빔 CT에 의한 피폭선량을 감소시키고 촬영으로 인한 추가적인 치료시간을 줄여 줄 수 있다. 또한 PTV, 정상장기의 선량분포의 차이가 크지 않으므로 환자의 상태의 따라 격일 콘빔 CT의 적용을 고려할 수 있을 것으로 사료된다.

Keywords

References

  1. Chao KS, Wippold FJ, Ozyigit G, et al. Determination and delineation of nodal target volumes for head- and neck cancer based on patterns of failure in patients receiving definitive and postoperative IMRT. Int J Radia Oncol Bio Phys 2002;53:1174-1184 https://doi.org/10.1016/S0360-3016(02)02881-X
  2. Michael Pinkawa, Charbel Attiech, Marc D. Piroth, et al. Dose-escalation using intensity-modulated radiotherapy for protate cancer Evaluation of the dose distribution with and without 18F-choline PET-CT detected simultaneous integrated boost. Radiother and Oncol 2009;93:213-4 https://doi.org/10.1016/j.radonc.2009.07.014
  3. Convery DJ, Rosenbloom ME. The generation of intensity-modulated fields for conformal radiotherapy by dynamic collimation. Med Phys 1992;37:1359-1379 https://doi.org/10.1088/0031-9155/37/6/012
  4. Cheong KH, Suh TS, Cho BC, et al. Analysis of uncertainties due to digitally reconstructed radiographic (DRR) image quality in 2D- 2D matching between DRRs and kV X-ray images from the On- Board Imager (OBI). Korean J Med Phys 2006;17:67-76
  5. Michael J. Zelefsky, Marisa Kollmeier, Brett Cox, et al. Improved clinical outcomes with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radia Oncol Bio Phys 2012;84:125-9 https://doi.org/10.1016/j.ijrobp.2011.11.047
  6. Monica W. K. Kan, M.Phill., Lucullus H. T. Leung, et al. Radiation dose from cone beam computed tomography for image-guided radiation therapy. Int J Radia Oncol Bio Phys 2008;70:272-9 https://doi.org/10.1016/j.ijrobp.2007.08.062
  7. Louise Varner Laursen, Ulrik Vindelev Elstrom, Anne Vestergaard, et al. Residual rotational set-up errors after daily cone-beam CT image guided radiotherapy of locally advanced cervical cancer. Radiother and Oncol 2012;105:220-5 https://doi.org/10.1016/j.radonc.2012.08.012
  8. Paul M.A van Haaren, Arjan Bel, Pieter Horfman, et al. Influence of daily setup measurements and correction on the estimated delivered dose during IMRT treatment of prostate cancer patients. Radiother and Oncol 2009;90:291-8 https://doi.org/10.1016/j.radonc.2008.12.021
  9. Zelefsky, M. J., Housman, D. M., Pei, X., Alicikus, et al. Incidence of secondary cancer development after high-dose intensity-modulated radiotherapy and image-guided brachytherapy for the treatment of localized prostate cancer. Int J Radia Oncol Bio Phys 2012;83:953-9 https://doi.org/10.1016/j.ijrobp.2011.08.034
  10. George X. Ding, Peter Munro, Jason Pawlowski, et al. Reducing radiation exposure to patients form Kv- CBCT imaging. Radiother and Oncol 2001;97:585-592
  11. Varian Medical Systems. Varian On-Board Imager(OBI) Reference Guide. Palo Alto (CA) : Varian Medical Systems 2008;170-1