Comparison of Treatment Planning System(TPS) and actual Measurement on the surface under the electron beam therapy with bolus

전자선 치료 시 Bolus를 적용한 경우 표면선량의 Treatment Planning System(TPS) 계산 값과 실제 측정값의 비교

  • Kim, Byeong Soo (Department of Radiation Oncology, Samsung Medical Center) ;
  • Park, Ju Young (Department of Radiation Oncology, Samsung Medical Center) ;
  • Park, Byoung Suk (Department of Radiation Oncology, Samsung Medical Center) ;
  • Song, Yong Min (Department of Radiation Oncology, Samsung Medical Center) ;
  • Park, Byung Soo (Department of Radiation Oncology, Samsung Medical Center) ;
  • Song, Ki Weon (Department of Radiation Oncology, Samsung Medical Center)
  • 김병수 (삼성서울병원 방사선종양학과) ;
  • 박주영 (삼성서울병원 방사선종양학과) ;
  • 박병석 (삼성서울병원 방사선종양학과) ;
  • 송용민 (삼성서울병원 방사선종양학과) ;
  • 박병수 (삼성서울병원 방사선종양학과) ;
  • 송기원 (삼성서울병원 방사선종양학과)
  • Received : 2014.05.30
  • Accepted : 2014.12.02
  • Published : 2014.12.30

Abstract

Purpose : If electron, chosen for superficial oncotherapy, was applied with bolus, it could work as an important factor to a therapy result by showing a drastic change in surface dose. Hence the calculation value and the actual measurement value of surface dose of Treatment Planning System (TPS) according to four variables influencing surface dose when using bolus on an electron therapy were compared and analyzed in this paper. Materials and Methods : Four variables which frequently occur during the actual therapies (A: bolus thickness - 3, 5, 10 mm, B: field size - $6{\time}6$, $10{\time}10$, $15{\time}15cm2$, C: energy - 6, 9, 12 MeV, D: gantry angle - $0^{\circ}$, $15^{\circ}$) were set to compare the actual measurement value with TPS(Pinnacle 9.2, philips, USA). A computed tomography (lightspeed ultra 16, General Electric, USA) was performed using 16 cm-thick solid water phantom without bolus and total 54 beams where A, B, C, and D were combined after creating 3, 5 and 10 mm bolus on TPS were planned for a therapy. At this moment SSD 100 cm, 300 MU was investigated and measured twice repeatedly by placing it on iso-center by using EBT3 film(International Specialty Products, NJ, USA) to compare and analyze the actual measurement value and TPS. Measured film was analyzed with each average value and standard deviation value using digital flat bed scanner (Expression 10000XL, EPSON, USA) and dose density analyzing system (Complete Version 6.1, RIT, USA). Results : For the values according to the thickness of bolus, the actual measured values for 3, 5 and 10 mm were 101.41%, 99.58% and 101.28% higher respectively than the calculation values of TPS and the standard deviations were 0.0219, 0.0115 and 0.0190 respectively. The actual values according to the field size were $6{\time}6$, $10{\time}10$ and $15{\time}15cm2$ which were 99.63%, 101.40% and 101.24% higher respectively than the calculation values and the standard deviations were 0.0138, 0.0176 and 0.0220. The values according to energy were 6, 9, and 12 MeV which were 99.72%, 100.60% and 101.96% higher respectively and the standard deviations were 0.0200, 0.0160 and 0.0164. The actual measurement value according to beam angle were measured 100.45% and 101.07% higher at $0^{\circ}$ and $15^{\circ}$ respectively and standard deviations were 0.0199 and 0.0190 so they were measured 0.62% higher at $15^{\circ}$ than $0^{\circ}$. Conclusion : As a result of analyzing the calculation value of TPS and measurement value according to the used variables in this paper, the values calculated with TPS on 5 mm bolus, $6{\time}6cm2$ field size and low-energy electron at $0^{\circ}$ gantry angle were closer to the measured values, however, it showed a modest difference within the error bound of maximum 2%. If it was beyond the bounds of variables selected in this paper using electron and bolus simultaneously, the actual measurement value could differ from TPS according to each variable, therefore QA for the accurate surface dose would have to be performed.

목 적 : 표재성 종양 치료를 위하여 선택한 전자선은 bolus와 동시에 사용할 경우 표면선량에 급격한 변화를 보이게 되며 이는 치료결과의 중요한 변수로 작용할 수 있다. 이에 본 논문에서는 전자선 치료에서 bolus가 적용될 경우 표면선량을 좌우할 수 있는 4 가지 변수에 따른 치료계획시스템(Treatment Planning System, TPS)의 표면선량 계산 값과 실제 측정값을 비교 분석하였다. 대상 및 방법 : 치료계획시스템(Pinnacle 9.2, philips, USA)과 실제 측정값을 비교하기 위하여 실제 치료 시 주로 발생되는 4가지 변수(A: bolus 두께 - 3, 5, 10 mm, B: 조사야 크기 - $6{\time}6$, $10{\time}10$, $15{\time}15cm2$, C: 에너지 - 6, 9, 12 MeV, D: 겐트리 각도 - 0, $15^{\circ}$)를 설정하였다. 16 cm 두께의 solid water phantom을 이용하여 bolus(Action Products, USA) 없이 전산화단층촬영(lightspeed ultra 16, General Electric, USA)을 시행하였고 치료 계획은 TPS 상에서 각각 3, 5, 10 mm bolus를 생성하여 A, B, C, D를 조합한 총 54개의 beam으로 계획하였다. 이때 SSD 100 cm, 300 MU를 조사하였고 TPS와 실제 측정값을 비교 분석하기 위해 EBT3 film(International Specialty Products, NJ, USA)을 이용해 iso-center에 위치시켜 2회 반복 측정하였다. 측정된 film은 디지털 평판 스캐너(Expression 10000XL, EPSON, USA)와 선량 농도 분석시스템(Complete Version 6.1, RIT, USA)을 사용하여 각각의 평균값과 표준편차 값으로 분석하였다. 결 과 : bolus 두께에 따른 값은 3, 5, 10 mm에서 실제 측정된 값이 TPS의 계산 값보다 각각 101.41%, 99.58%, 101.28%, 표준편차는 각각 0.0219, 0.0115, 0.0190 으로 나타났다. 조사야 크기에 따른 실제 측정값은 $6{\time}6$, $10{\time}10$, $15{\time}15cm2$ 각각 계산 값에 비해 99.63%, 101.40%, 101.24%, 표준편차는 0.0138, 0.0176, 0.0220 으로 나타났다. 에너지에 따른 값은 상대적으로 6, 9, 12 MeV 각각 99.72%, 100.60%, 101.96%, 표준편차는 0.0200, 0.0160, 0.0164로 나타났다. 빔 각도에 따른 실제 측정값은 계산된 값에 비하여 0, $15^{\circ}$에서 각각 100.45%, 101.07%, 표준편차는 0.0199, 0.0190 으로써 $15^{\circ}$에서 $0^{\circ}$보다 0.62% 높게 측정되었다. 결 론 : 본 논문에서 사용한 변수에 따른 계산 값과 측정값을 분석한 결과 5 mm bolus, $6{\time}6cm2$ 조사야, 저 에너지 전자선, $0^{\circ}$ 겐트리 각도에서 TPS로 계산한 값이 측정값에 더 가까웠지만 다른 변수를 적용한 비교에서도 최대 2% 오차범위 내에 포함되는 결과를 보였다. 전자선과 bolus를 동시에 사용하는 경우 본 논문에서 선택된 변수의 범위를 벗어난다면 각각의 변수에 따라 실제 측정값이 TPS와 달라질 수 있기 때문에 정확한 표면선량에 대한 QA를 반드시 실시해야 한다.

Keywords

References

  1. Khan, F.M. The Physics of Radiation Therapy. Baltimore: Williams & Wilkins; 1984.
  2. Klevenhagen, S.C. Physics of Electron Beam Therapy. Bristol: Adam Hilger, Ltd., in collaboration with the Hospital Physicist''Association; 1985.
  3. ICRU Report 35. Radiation Dosimetry: Electron Beams with Energies Between 1 and 50 MeV. Bethesda: ICRU; 1984.
  4. Khan, F.M.; Doppke, K.P.; Hogstrom, K.R.; et al. Clinical electron beam dosimetry: Report of AAPM Radiation Therapy Committee Task Group No. 25. Med. Phys. 18:73-107; 1991. https://doi.org/10.1118/1.596695
  5. Khan F. The physics of radiation therapy. 4rd ed. 264
  6. Khan F. The physics of radiation therapy. 4rd ed. 84
  7. Chang F, Chang P, Benson K : Study of el-asto-gel pads used as surface bolus material in high energy photon and electron beams, Int J Radiat Oncol Biol Phys 1992;22: 191-193 https://doi.org/10.1016/0360-3016(92)90999-X
  8. Low PA, Starkschall G, Bujnowski SW : Elect-ron bols design for radiotherapy treatment planning, Bolus design algorithm, Med Phys 1992;19: 115-124 https://doi.org/10.1118/1.596885
  9. Faiz MK : The physics of radiation therapy, 2nd ed, 387
  10. Furetta, C.; Leroy, C.; Lamarche, F. A precise investigation on the TL behaviour of LiF:Mg,Cu,P (GR200A). Med. Phys. 21:1605-u9; 1994. https://doi.org/10.1118/1.597261
  11. Gerbi, B.J.; Khan, F.M. The polarity effect for commercially available plane-parallel ionization chambers. Med. Phys. 14:210 - $\phi$5; 1987.
  12. Aget, H.; Rosenwald, J.C. Polarity effect for various ionization chambers with multiple irradiation conditions in electron beams. Med. Phys. 18:67 - a72; 1991. https://doi.org/10.1118/1.596694
  13. Robar, V.; Zankowski, C.; Pla, M.O.; Podgorsak, E.B. Thermoluminescent dosimetry in electron beams: Energy dependence. Med. Phys. 23:667-u73; 1996. https://doi.org/10.1118/1.597712
  14. Holt, J.G.; Edelstein, G.R.; Clark, T.E. Energy dependence of the response of lithium fluoride TLD rods in high energy electron fields. (Abstr.) Phys. Med. Biol. 20:559-a70; 1975. https://doi.org/10.1088/0031-9155/20/4/003
  15. Niewald, M.; Lehmann, W.; Tkocz, H.J. Chest wall moulages for radiotherapy of resected breast cancer with fast electrons: Comparative tests of different materials. (Abstr.) Strahlenther. Onkol. 10:605-$\div$12; 1986.