DOI QR코드

DOI QR Code

Effect of Herbicide Combinations on Bt-Maize Rhizobacterial Diversity

  • Valverde, Jose R. (Centro Nacional de Biotecnologia, CSIC) ;
  • Marin, Silvia (Centro Nacional de Biotecnologia, CSIC) ;
  • Mellado, Rafael P. (Centro Nacional de Biotecnologia, CSIC)
  • Received : 2014.05.22
  • Accepted : 2014.07.22
  • Published : 2014.11.28

Abstract

Reports of herbicide resistance events are proliferating worldwide, leading to new cultivation strategies using combinations of pre-emergence and post-emergence herbicides. We analyzed the impact during a one-year cultivation cycle of several herbicide combinations on the rhizobacterial community of glyphosate-tolerant Bt-maize and compared them to those of the untreated or glyphosate-treated soils. Samples were analyzed using pyrosequencing of the V6 hypervariable region of the 16S rRNA gene. The sequences obtained were subjected to taxonomic, taxonomy-independent, and phylogeny-based diversity studies, followed by a statistical analysis using principal components analysis and hierarchical clustering with jackknife statistical validation. The resilience of the microbial communities was analyzed by comparing their relative composition at the end of the cultivation cycle. The bacterial communites from soil subjected to a combined treatment with mesotrione plus s-metolachlor followed by glyphosate were not statistically different from those treated with glyphosate or the untreated ones. The use of acetochlor plus terbuthylazine followed by glyphosate, and the use of aclonifen plus isoxaflutole followed by mesotrione clearly affected the resilience of their corresponding bacterial communities. The treatment with pethoxamid followed by glyphosate resulted in an intermediate effect. The use of glyphosate alone seems to be the less aggressive one for bacterial communities. Should a combined treatment be needed, the combination of mesotrione and s-metolachlor shows the next best final resilience. Our results show the relevance of comparative rhizobacterial community studies when novel combined herbicide treatments are deemed necessary to control weed growth.

Keywords

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Bai Z, Xu HJ, He HB, Zheng LC, Zhang XD. 2013. Alterations of microbial populations and composition in the rhizosphere and bulk soil as affected by residual acetochlor. Environ. Sci. Pollut. Res. 20: 369-379. https://doi.org/10.1007/s11356-012-1061-3
  3. Barriuso J, Marin S, Mellado RP. 2010. Effect of the herbicide glyphosate on glyphosate-tolerant maize rhizobacterial communities: a comparison with pre-emergency applied herbicide consisting of a combination of acetochlor and terbuthylazine. Environ. Microbiol. 12: 1021-1030. https://doi.org/10.1111/j.1462-2920.2009.02146.x
  4. Barriuso J, Marin S, Mellado RP. 2011. Potential accumulative effect of the herbicide glyphosate on glyphosate-tolerant maize rhizobacterial communities over a three-year cultivation period. PLoS One 6: e27558. https://doi.org/10.1371/journal.pone.0027558
  5. Barriuso J, Valverde JR, Mellado RP. 2011. Effect of the herbicide glyphosate on the culturable fraction of glyphosatetolerant maize rhizobacterial communities using two different growth media. Microbes Environ. 26: 332-338. https://doi.org/10.1264/jsme2.ME11137
  6. Barriuso J, Mellado RP. 2012. Glyphosate affects the rhizobacterial communities in glyphosate-tolerant cotton. Appl. Soil Ecol. 55: 30-36.
  7. Barriuso J, Mellado RP. 2012. Relative effect of glyphosate on glyphosate-tolerant maize rhizobacterial communities is not altered by soil properties. J. Microbiol. Biotechnol. 22: 159-165. https://doi.org/10.4014/jmb.1107.07036
  8. Barriuso J, Valverde JR, Mellado RP. 2012. Effect of Cry1Ab protein on rhizobacterial communities of Bt-maize over a four-year cultivation period. PLoS One 7: e35481. https://doi.org/10.1371/journal.pone.0035481
  9. Batisson I, Crouzet O, Besse-Hoggan P, Sancelme M, Mangot JF, Mallet C, B ohatier J. 2009. I solation and characterization of mesotrione-degrading Bacillus sp. from soil. Environ. Pollut. 157: 1195-1201. https://doi.org/10.1016/j.envpol.2008.12.009
  10. Blackshaw RE, O'Donovan JT, Harker KN, Clayton GW, Stougaart RN. 2006. Reduced herbicide doses in field crops: a review. Weed Biol. Manage. 6: 10-17. https://doi.org/10.1111/j.1445-6664.2006.00190.x
  11. Caporaso JG, Kuczynskim J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
  12. Crouzet O, Batisson I, Besse-Hoggan P, Bonnemoy F, Bardot C, Poly F, et al. 2010. Response of soil microbial communities to the herbicide mesotrione: a dose-effect microcosm approach. Soil Biol. Biochem. 42: 193-202. https://doi.org/10.1016/j.soilbio.2009.10.016
  13. de-Bashan LE, Hernandez JP, Bashan Y. 2012. The potential contribution of plant growth-promoting bacteria to reduce environmental degradation - A comprehensive evaluation. Appl. Soil Ecol. 61: 171-189. https://doi.org/10.1016/j.apsoil.2011.09.003
  14. DeLorenzo ME, Scott GI, Ross PE. 2001. Toxicity of pesticides to aquatic microorganisms: a review. Environ. Toxicol. Chem. 20: 84-98. https://doi.org/10.1002/etc.5620200108
  15. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72: 5069-5072. https://doi.org/10.1128/AEM.03006-05
  16. Dohrmann AB, Kuting M, Junemann D, Jaenicke S, Schluter A, Tebbe CC. 2013. Importance of rare taxa for bacterial diversity in the rhizosphere of Bt- and conventional maize varieties. ISME J. 7: 37-49. https://doi.org/10.1038/ismej.2012.77
  17. Duke SO, Lydon J, Koskinen WC, Moorman TB, Chaney RL, Hammerschmidt R. 2012. Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops. J. Agric. Food Chem. 60: 10375-10397. https://doi.org/10.1021/jf302436u
  18. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
  19. El Fantroussi S, Verschuere L, Verstraete W, Top EM. 1999. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl. Environ. Microbiol. 65: 982-988.
  20. Foley M, Sigler V, Gruden C. 2008. A multiphasic characterization of the impact of the herbicide acetochlor on freshwater bacterial communities. ISME J. 2: 56-66. https://doi.org/10.1038/ismej.2007.99
  21. Franz JE, Mao MK, Silkorski JA. 1997. Glyphosate: a unique global herbicide. ACS Monograph ISBN: 0-8412-3458-2.
  22. Gantoli G, Rueda Ayala V, Gerhards R. 2013. Determination of the critical period for weed control in corn. Weed Technol. 27: 63-71. https://doi.org/10.1614/WT-D-12-00059.1
  23. Gursoy O, Padem H. 2012. Influence of aclonifen on the growth of Rhizobium phaseolii and the yield of green beans (Phaseolus vulgaris L.). Int. J. Plant Res. 2: 195-198. https://doi.org/10.5923/j.plant.20120206.04
  24. Hamady M, Lozupone C, Knight R. 2009. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 4: 17-27.
  25. Hardoim P, Nissinen R, van Elsas JD. 2012. Ecology of bacterial endophytes in sustainable agriculture, pp. 97-126. In: Bacteria in Agrobiology: Plant Probiotics. Springer, Berlin Heidelberg.
  26. Hart MM, Powell JR, Gulden RH, Dunfield KE, Pauls KP, Swanton CJ, et al. 2009. Separating the effect of crop from herbicide on soil microbial communities in glyphosateresistant corn. Pedobiologia 52: 253-262. https://doi.org/10.1016/j.pedobi.2008.10.005
  27. Hodgson DA. 2000. Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv. Microb. Physiol. 42: 47-238. https://doi.org/10.1016/S0065-2911(00)42003-5
  28. Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC. 2011. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 21: 1552-1560. https://doi.org/10.1101/gr.120618.111
  29. Johnson B C, Y oung B G, M atthews JL. 2002. Effect o f postemergence application rate and timing of mesotrione on corn (Zea mays) response and weed control. Weed Technol. 16: 414-420. https://doi.org/10.1614/0890-037X(2002)016[0414:EOPARA]2.0.CO;2
  30. Joly P, Besse-Hoggan P, Bonnemoy F, Batisson I, Bohatier J, Mallet C. 2012. Impact of maize formulated herbicides mesotrione and s-metolachlor, applied alone and in mixture, on soil microbial communities. ISRN Ecol. 2012: Article ID 329898.
  31. Kara EE, Arli M, Uygur V. 2004. Effects of the herbicide Topogard on soil respiration, nitrification, and denitrification in potato-cultivated soils differing in pH. Biol. Fertil. Soils 39: 474-478. https://doi.org/10.1007/s00374-004-0729-3
  32. Kato S, Kitajima T, Okamoto H, Kobutani T. 2001. Pethoxamid, a novel selective herbicide for maize and soybean, pp. 23-28. In: The British Crop Protection Council Conference: Weeds, 2001, United Kingdom.
  33. Kielak AM, van Veen JA, Kowalchuk GA. 2010. Comparative analysis of acidobacterial genomic fragments from terrestrial and aquatic metagenomic libraries, with emphasis on Acidobacteria Subdivision 6. Appl. Environ. Microbiol. 76: 6769- 6777. https://doi.org/10.1128/AEM.00343-10
  34. Lin CH, Lerch RN, Garrett HE, Jordan D, George MF. 2007. Ability of forage grasses exposed to atrazine and isoxaflutole to reduce nutrient levels in soils and shallow groundwater. Commun. Soil Sci. Plant Anal. 38: 1119-1136. https://doi.org/10.1080/00103620701327976
  35. Margulies M, Egholm M, Altman WE, Attiya S, Barder JS, Bemben LA, et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376-380. https://doi.org/10.1038/nature03959
  36. Martins PF, Carvalho G, Gratao PL, Dourado MN, Pileggi M, Araujo WL, Azevedo RA. 2011. Effects of the herbicides acetochlor and metolachlor on antioxidant enzymes in soil bacteria. Process Biochem. 46: 1186-1195. https://doi.org/10.1016/j.procbio.2011.02.014
  37. Nandula VK, Reddy KN, Duke SO, Poston DH. 2005. Glyphosate-resistant weeds: current status and future outlook. Outlooks Pest Manage. 16: 183-187. https://doi.org/10.1564/16aug11
  38. Page ER, Cerrudo D, Westra P, Loux M, Smith K, Foresman C, et al. 2012. Why early season weed control is important in maize. Weed Sci. 60: 423-430. https://doi.org/10.1614/WS-D-11-00183.1
  39. Pocanam YA. 2007. 20eme Conference du COLUMA. Journees Internationales sur la Lutte contre les Mauvaises Herbes, pp. 699-705. Dijon, France.
  40. Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, et al. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. USA 110: 6548-6553. https://doi.org/10.1073/pnas.1302837110
  41. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35: 7188-7196. https://doi.org/10.1093/nar/gkm864
  42. Talbot AR, Shiaw MH, Huang JS, Yang SF, Goo TS, Wang SH, et al. 1991. Acute poisoning with a glyphosate-surfactant herbicide ('Roundup'): a review of 93 cases. Hum. Exp. Toxicol. 10: 1-8. https://doi.org/10.1177/096032719101000101
  43. Tornisielo VL, Botelho RG, de Toledo Alves PA, Bonfleur EJ, Monteiro SH. 2013. Pesticide tank mixes: an environmental point of view, pp. 473-487. In Price AJ, Kelton JA (eds.). Herbicides - Current Research and Case Studies in Use. InTech.
  44. Valverde JR, Mellado RP. 2013. Analysis of metagenomic data containing high biodiversity levels. PLoS One 8: e58118. https://doi.org/10.1371/journal.pone.0058118
  45. Viegas CA, Costa C, Andre S, Viana P, Ribeiro R, Moreira- Santos M. 2012. Does s-metolachlor affect the performance of Pseudomonas sp. strain ADP as bioaugmentation bacterium for atrazine-contaminated soils? PLoS One 7: e37140. https://doi.org/10.1371/journal.pone.0037140

Cited by

  1. Impact of Genetically Modified Stacked Maize NK603 × MON810 on the Genetic Diversity of Rhizobacterial Communities vol.61, pp.4, 2015, https://doi.org/10.1515/agri-2015-0019
  2. Current trends in Bt crops and their fate on associated microbial community dynamics: a review vol.253, pp.3, 2014, https://doi.org/10.1007/s00709-015-0903-5
  3. Potential roles for microbial endophytes in herbicide tolerance in plants vol.72, pp.2, 2016, https://doi.org/10.1002/ps.4147
  4. Looking for Rhizobacterial Ecological Indicators in Agricultural Soils Using 16S rRNA metagenomic Amplicon Data vol.11, pp.10, 2014, https://doi.org/10.1371/journal.pone.0165204
  5. Impact of Glyphosate on the Rhizosphere Microbial Communities of An EPSPS -Transgenic Soybean Line ZUTS31 by Metagenome Sequencing vol.18, pp.None, 2017, https://doi.org/10.2174/1389202918666170705162405
  6. Mesotrione Herbicide: Efficiency, Effects, and Fate in the Environment after 15 Years of Agricultural Use : General vol.45, pp.9, 2014, https://doi.org/10.1002/clen.201700011
  7. Herbicide Widespread: The Effects of Pethoxamid on Nonalcoholic Fatty Liver Steatosis In Vitro vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/7915795
  8. Response of Rhizobacterial Community to Biochar Amendment in Coal Mining Soils with Brachiaria Decumbens as Pioneer Plant vol.29, pp.1, 2014, https://doi.org/10.1080/15320383.2019.1669531
  9. Structuring biofilm communities living in pesticide contaminated water vol.6, pp.5, 2014, https://doi.org/10.1016/j.heliyon.2020.e03996