DOI QR코드

DOI QR Code

Isolation and Morphological Identification of Fresh Water Green Algae from Organic Farming Habitats in Korea

유기농업 생태계로부터 담수 녹조류 분리 및 형태적 동정

  • 김민정 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 심창기 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 김용기 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 홍성준 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 박종호 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 한은정 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 지형진 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 윤종철 (농촌진흥청 국립농업과학원 기획조정과) ;
  • 김석철 (농촌진흥청 국립농업과학원 유기농업과)
  • Received : 2014.11.07
  • Accepted : 2014.11.17
  • Published : 2014.12.31

Abstract

This study aimed to isolate and identify freshwater algae from the organic agricultural ecosystems and investigate its biological characteristics to study the possibility of utilizing a biomass freshwater algae in organic farming. In the survey area, average water temperature was $12.4{\sim}28.2^{\circ}C$ and the pH ranges were from 6.1 to 8.5. The solid culture method is more suitable than liquid culture method for isolation of freshwater algae with lower contamination level and higher isolation frequency. A total of 115 strains were isolated from six freshwater algae habitats in nine regions in Korea. BGMM (BG11 Modified Medium) amended with NaNO3 and $KNO_3$ as a nitrogen, and $Na_2CO_3$ as carbon source was designed to isolate and culture freshwater algae. Absorbance of freshwater algae culture has increased dramatically to four days and decreased after eight days after inoculation. CHK008 of the seven isolates showed the highest absorbance in seven days after culturing in BGMM. The optimal pH of BGMM for culturing freshwater algae was pH 6-7. As light intensity increased, growth of freshwater algae increased. Among the five kinds of carbon sources, glucose and galactose promoted good growth of freshwater algae in BGMM. The colony color of purified 16 green algae isolates showed a separation of green, dark and light green, and of them, eleven algae strains showed a strong fluorescent light under fluorescence microscopy. Cell size of the green algae showed a wide range of variation depending on the species. General morphology of the green algae strains was spherical. Chlamydomonas sp. was elliptical, and Chlorella sorokiniana was ellipsoidal and cylindrical. All strains of the green algae except for Chlamydomonas sp. did not have flagella. One isolate of Chlamydomonas sp. and five isolates of C. sorokiniana secreted mucus. Sixteen isolates of 16 green algae were identified as two family and six species, Chlorella vulgalis, C. sorokiniana, C. pyrenoidosa, C. kessleri, C. emersonii, and Chlamydomonas sp. based on their morphological characteristics.

본 연구는 유기농업에서 생물자원으로서 담수 클로렐라의 활용 가능성을 연구하고자 유기농 생태계로부터 담수 녹조류를 분리, 동정하고, 생물학적인 특성을 조사하였다. 조사 지역의 수온은 $12.4{\sim}28.2^{\circ}C$, pH는 6.1~8.5이었다. 담수 녹조류를 분리할 때 고체배양법이 액체배양법보다 오염도가 낮고 분리 빈도가 높았다. 전국 9개 지역, 6개 담수 녹조류 서식처로 부터 총 115개의 균주를 분리하였다. 담수 녹조류의 분리 및 배양을 위해 질소원으로는 $NaNO_3$$KNO_3$, 탄소원으로 $Na_2CO_3$를 사용하였고, macro media의 구성 성분 중 $MgSO_4{\cdot}7H_2O$$CaCl_2{\cdot}2H_2O$를 분리하여 제조한 BGMM(BG11 Modified Medium)배지를 고안하였다. 담수녹조류는 배양 후 4일째부터 급격히 흡광도가 증가하였고 8일째부터 흡광도가 감소하였다. 공시한 7개의 균주 중 CHK008 균주가 배양 7일째에 가장 높은 흡광도를 보였다. 담수 녹조류 배양에 적합한 BGMM 배지의 pH는 6~7이었고 조사되는 빛이 강할수록 생육이 증가하였으며 5종류 당류 중에서 Glucose와 Galactose를 첨가하였을 때 클로랄라의 생육이 좋았다. 순수 분리한 16개 녹조류 균주의 균총색은 녹색, 진녹색, 연녹색을 나타내었고, 11개의 균주가 형광현미경하에서 강한 형광 빛을 나타내었다. 녹조류 16개 균주의 형태적인 특징을 조사한 결과 C. vulgalis, C. sorokiniana, C. pyrenoidosa, C. kessleri, C. emersonii, and Chlamydomonas sp.의 2개 속 6개종으로 동정되었다. 담수 녹조류의 세포 크기는 종마다 다양한 변이를 보였다. 대부분의 담수 녹조류의 세포형태는 구형이었다. Chlamydomonas sp.는 타원형이었고 Chlorella sorokiniana는 구형과 타원형이 섞여 있었다. 6개 녹조류 종류 중 Chlamydomonas sp.를 제외한 모든 균주는 편모가 없었다. Chlamydomonas sp. 1개 균주와 C. sorokiniana 5개 균주는 세포에서 점질물을 분비하였다.

Keywords

References

  1. Aksu, Z., U. Acikel, and T. Kutsal. 1999. Investigation of simultaneous biosorption of copper (II) and chromum (VI) on dried Chlorella vulgaris from binary metal mixtures: Application of multicomponent adsorption isotherms. Sep. Sci. Technol. 34: 501-524. https://doi.org/10.1081/SS-100100663
  2. Allen, M. B. 1966. Studies on the properties of some blue-green algae. Ph. D. Dissertation, University of California, Berkeley.
  3. Anderson, R. A. 2005. Algal Culturing Techniques. Burlington: Elsevier Academic Press. p.
  4. Benson A. A. 2002. Following the path of carbon in photosynthesis: A personal story. Photosynth. Res. 73: 29-49. https://doi.org/10.1023/A:1020427619771
  5. Cha, J. Y., J. W. Kim, B. K. Park, H. J. Jin, S. Y. Kim, and Y. S. Cho. 2008. Isolation and identification of Chlorella sp. CMS-1 and the chemical composition of its hot water extract. J. of Life Science 18: 1723-1727. https://doi.org/10.5352/JLS.2008.18.12.1723
  6. Cho, I. S. 2004. Industrial applications and production of Chlorella. Kor. J. Microbiol. 30: 42-49.
  7. Faheed, F. A. and Z. Abd-El Fattah. 2008. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J. of Agri. & Soc. Sci. 4: 165-169.
  8. Fott, B. and M. Novakova, 1969. A Monograph of the Genus Chlorella. In: The Freshwater Species, Studies in Phycology, Fott, B. (Ed.). Academia, Praha, pp. 10-74.
  9. Gabriel, B. 1996. Wastewater Microbiology, John Wiley & Son, N.Y. pp. 68-75.
  10. Geoghegan, M. J. 1951. Unicellular algae as a source of food. Nature 168: 426-427. https://doi.org/10.1038/168426a0
  11. Green, B. R. 2011. After the primary endosymbiosys: an update on the chromalveolate hypothesis and the origins of algae with chl c. Photosynth. Res. 107: 103-115. https://doi.org/10.1007/s11120-010-9584-2
  12. Guiry, M. D. and Guiry, G. M. 2014. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 2014.
  13. Hernandez, J. P., L. E. De-Bashan, D. J. Rodriguez, Y. Rodriguez, and Y. Bashan. 2009. Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing plant growth-promoting bacterium Bacillus pumilus from arid zone soils. European J. Soil Biol., 45: 88-93 https://doi.org/10.1016/j.ejsobi.2008.08.004
  14. Hiroto, N., M. Tadahiko, and K. Shozo. 1996. Effects of the hot water extract and its residues of Chlorella cells on the growth of radish seedlings and changes in soil microflora. Jpn. J. Soil Sci. Plant Nutr. 67: 17-23.
  15. Hoxteman, E. 2007. A comment on Werburg's early understanding of biocatalysis. Photosynth. Res. 92: 121-127. https://doi.org/10.1007/s11120-007-9164-2
  16. Huang, B., H. Hong, and L. Chen. 1994. The physiological effects of different N-P ratios on algae in semicontinuous culture. Asian Mar. Biol. 11: 137-142.
  17. Huss, V. R., C. Frank, E. C. Hartmann, M. Hirmer, A. Kloboucek, B. M. Seidel, P. Wenzeler, and E. Kessler. 1999. Biochemical taxonomy and molecular phylogeny of the genus Chlorella Sensu Lato (Chlorophyta). J. Phycol. 35: 587-598. https://doi.org/10.1046/j.1529-8817.1999.3530587.x
  18. Ichimi, K., S. Meksumpum, and S. Montani. 2003. Effects of light intensity on the cyst germination of Chattonella sp. (Raphidophyeae), Plankton Biology and Ecology 50: 22-24.
  19. Jeanfils, J., M. F. Canisius, and N. Burlion. 1993. Effect of nitrate concentrations on growth and nitrate uptake by free-living and immobilized Chlorella vulgaris cells. J. Appl. Phycol. 5: 369-374. https://doi.org/10.1007/BF02186240
  20. Jeon, S. M., I. H. Kim, J. M. Ha, and J. H. Lee. 2008. Overview of technology for fization of carbon dioxide using microalgae. J. Korean Ind. Eng. Chem. 19: 145-150.
  21. Jin, H. J. 2008. Optimization of media composition and culture conditions for the growth of Chlorella sp. CMS-1. Master degree thesis of Dong-A University, Busan, Korea.
  22. Kanetsuna, Y. 2002. New and interesting desmids (Zygnematales, Chlorophyeae) collected from asia. Phyco. Res. 50: 101-103. https://doi.org/10.1111/j.1440-1835.2002.tb00140.x
  23. Kang, M. S., S. J. Sim, and H. J. Chae. 2004. Chlorella as a functional biomaterial. Korean J. Biotechnol. Bioeng. 19: 1-11.
  24. Karakashian, S. J. and Karakashian M. W. 1965. Evolution and symbiosis in the genus Chlorella and related algae. Evolution 19: 368-377. https://doi.org/10.2307/2406447
  25. Karin, N. 2009. The construction of a scientific model: Otto Warburg and the building block strategy. Studies in History and Philosophy of Biological and Biomedical Science 40: 73-86. https://doi.org/10.1016/j.shpsc.2009.03.002
  26. Kazumasa, H., Y. Sayaka, D. Susilangsih, I. Osamu, M. Aparat, P. Jirapatch, and Y. Kazuhisa. 2003. Bioactivities of nostocine a produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169. J. Biosci. Bioeng. 95: 512-517. https://doi.org/10.1016/S1389-1723(03)80053-1
  27. Krauss, R. W. 1962. Mass culture of algae for food and other organic compounds. American J. Botany 49: 425-435. https://doi.org/10.2307/2439085
  28. Lee, T. Y., B. R. Choi, J. K. Lee, and J. H. Lim. 2011. Cultivation of Chlorella sp. using light emitting diode. Kor. J. Envi. Eng. 33: 591-597.
  29. Lee, Y. N. and C. S. Lee. 1970. Studies on nucleic acid and protein biosynthesis of Chlorella cells during the course of the chloroplast development. Korean J. Microbiol. 8: 1-12.
  30. Lin C. S., T. L. Chou, and J. T. Wu. 2013. Biodiversity of soil algae in the farmlands of mid-Taiwan. Botanical Studies 54: 1-12. https://doi.org/10.1186/1999-3110-54-1
  31. Mahmoud, M. S. 2001. Nutritional status and growth of maize plants as affected by green microalgae as soil additives. J. Biol. Sci., 1: 475-479. https://doi.org/10.3923/jbs.2001.475.479
  32. Mata, T. M., A. A. Martins, and N. S. Caetano. 2010. Microalgae for biodiseal production and other applications: A review. Renewable Sustainable Energy 14: 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  33. Metting, B. and J. W. Pyne. 1986. Biologically active compounds from microalgae. Enzyme Microbial Technol. 8: 386-394. https://doi.org/10.1016/0141-0229(86)90144-4
  34. Oh-Hama T. and S. Miyachi. 1998. Chlorella, pp. 3-26. In: Borowitzka M. A. and L. J. Borowotzka (eds). Microalgal Biotechnology. Cambridge University Press, Cambridge.
  35. Ordog, V., W. A. Stirk, J. Van Staden, O. Novak, and M. Strand. 2004. Endogenous cytokinins in three genera of microalgae from Chlorophyta. J. Phycol., 40: 88-95 https://doi.org/10.1046/j.1529-8817.2004.03046.x
  36. Raposo, M. F. D. J. and R. M. S. C. De. Morais. 2011. Chlorella vulgaris as soil amendment: influence of encapsulation and enrichment with rhizobacteria. Int. J. Agric. Biol., 13: 719-724.
  37. Rhichmond, A. 1990. Large scale microalgal culture and applications, In: Phycology Research for 1990. Proc. Phycology Research Conference 1990, pp.1-62.
  38. Rippka, R., J. B. Deruells, M. Herdman, and R. Y. Stanier. 1979. Assignments strain history and properties of pure culture of Cyanobacteria. J. General. Micro. 111: 1-61. https://doi.org/10.1099/00221287-111-1-1
  39. Sheehan, J., V. Camobreco, J. Duffield, M. Graboski, and H. Shapouri. 1998. Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus, Final report NREL/ SR-580-24089, National Renewable Energy Laboratory, Golden, Colorado. (www.nrel.gov/docs/legosti/fy98/24089.pdf)
  40. Shihira, I. and R. W. Krauss, 1965. Chlorella Physiology and Taxonomy of Forty-one Isolates. University of Maryland, College Park, Maryland, pp. 1-92.
  41. Stanier R. Y., R. Kunisawa, M. Mandel, and G. Cohen-Bazire. 1971. Purification and properties of multi-cellular blue-green algae (order Chlorococcales). Bacteriol. Rev. 35: 171-205.
  42. Stirk, W. A., V. Ordog, J. Van Staden, and K. Jager. 2002. Cytokinin-and auxin-like activity in Cyanophyta and microalgae. J. Appl. Phycol., 14: 215-221. https://doi.org/10.1023/A:1019928425569
  43. Takeda, H. 1991. Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae). J. Phycol. 27: 224-232. https://doi.org/10.1111/j.0022-3646.1991.00224.x
  44. Tamiya, H., T. Iwamura, K. Shibata, E. Hase, and T. Nihei. 1953. Correlation between phytosynthesis and light-independent metabolism in the growth of Chlorella. Biochem. Biophy. Acta. 12: 23-40. https://doi.org/10.1016/0006-3002(53)90120-6
  45. Thompson, A. S., J. C. Rhodes, and I. Pettman. 1988. National environmental Research Council. Culture and Collection of Algae and Protozoa. Titus Wilson and Sons LTD. Kendal, UK, pp. 13-35.
  46. US DOE(Department of Energy). 2010. National Algal Biofuels Technology Rodmap. http://www1.eere.energy.gov/biomass/pdfs/algal_biofuels_roadmap.pdf.
  47. Vonshak. A. 1986. Laboratory techniques for the culturing of microalgae. In: Richmond, A. (ed). Handbook of Microalgal Mass Culture, p. 117. CRC Press, Boca Raton, Florida.
  48. Warburg, O. 1919. Uber die geschindigkeit der kohlensaurezersetzung in lebenden Zellen. Biochem. Z. 100: 230-270.
  49. Wu, H. L., R. S. Hseu, and L. P. Lin. 2001. Identification of Chlorella spp. isolates using ribosomal DNA sequences. Bot. Bull. Acad. Sin. 42: 115-121.
  50. Zallen, D. T. 1993. Redrawing the boundaries of molecular biology: The case of photosynthesis. J. of the History of Biology 26: 65-87. https://doi.org/10.1007/BF01060680