DOI QR코드

DOI QR Code

Potential Use of Calcined Silt of Dam as a Pozzolan in Blended Portland Cement

  • Rabehi, Bahia (Research Unit: Materials, Processes and Environment, University M'Hamed Bougara of Boumerdes) ;
  • Ghernouti, Youcef (Research Unit: Materials, Processes and Environment, University M'Hamed Bougara of Boumerdes) ;
  • Driss, Miloud (Laboratory of Sciences and Water Technical, University of Mascara)
  • Received : 2013.07.18
  • Accepted : 2014.02.26
  • Published : 2014.09.30

Abstract

This paper presents results of an experimental study which investigates the effect of industrial pozzolan made from calcined silt of dam at $750^{\circ}C$ for 5 h, on mechanical properties and durability of ordinary mortar, compared to the silica fume. Mortar specimens prepared with 5, 10 and 15 % of calcined silt to substitute cement were evaluated for their compressive and flexural strength, sulfate, acid and penetration of chloride ions resistance. The results were compared with ordinary mortar (without addition) and mortar containing 10 % of silica fume. The results obtained showed that the calcined silt of dam has a high potential to be used as a pozzolanic material, it improves the strength and the durability of mortar and compete the silica fume.

Keywords

References

  1. Al Rawas, A. A., Hago, A. W., Al Lawati, D., & Al Battashi, A. (2001). The Omani artificial pozzolans (Sarooj). Cement Concrete & Aggregates, 23(1), 19-26. https://doi.org/10.1520/CCA10521J
  2. Alonso, C., Andrade, C., Castellote, M., & Castro, P. (2000). Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar. Cement and Concrete Research, 30(7), 1047-1055. https://doi.org/10.1016/S0008-8846(00)00265-9
  3. Ambroise, J., Murat, M., & Pera, J. (1986). Investigations on synthetic binders obtained by middle-temperature thermal dissication of clay minerals. Silicates Industries, 7(8), 99-107.
  4. Ambroise, J., Martingale, S., & Pera, J. (1992). Pozzolanic behavior of thermally activated kaolin. In 4th International conference of fly ash, silica fume, slag and natural pozzolans in concrete, Istanbul, Turkey (pp. 731-748).
  5. Aquino, W., Lange, D. A., & Olek, J. (2001). The influence of metakaolin and silica fume on the chemistry of alkali-silica reaction products. Cement and Concrete Composites, 23(6), 485-493. https://doi.org/10.1016/S0958-9465(00)00096-2
  6. ASTM C 267-96. (October 2001). Standard test methods for chemical resistance of mortars, grouts, and monolithic surfacings and polymer concretes. Annual book of ASTM standards. West Conshohocken, PA: ASTM International.
  7. ASTM C 618. (January 2000). Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete. Annual book of ASTM standards. West Conshohocken, PA: ASTM International.
  8. Bager, G. S., Hansen, E. R., Wood, M. R., Neary, T., Beech, D. J., & Jaquier, D. (2001). Production and use of calcined natural pozzolans in concrete. Cement, Concrete & Aggregates, 23(2), 73-80. https://doi.org/10.1520/CCA10478J
  9. Baronio, G., & Binda, L. (1997). Study of the pozzolanicity of some bricks and clays. Construction and Building Materials, 11(1), 70-78.
  10. Benoit, O. (1969) Determination de l'activite pouzzolanique d'une pouzzolane par voie Chimique. Bull liaison labo. P. et Ch., 126, D1-D5.
  11. Butler, W. B. (1982). A critical look at ASTMC and C311, cement, concrete and aggregates. CCAGDP, 14(2), 68-72.
  12. Chinje, M., & Billong, N. (2004). Activite pouzzolanique des dechets de briques et tuiles cuites. African Journal of Science and Technology (AJST), Science and Engineering Series, 5(1), 92-100.
  13. Erhan, G., & Kasim, M. (2007). Comparative study on strength, sorptivity, and chloride ingress characteristics of air-cured and water-cured concretes modified with metakaolin. Materials and Structures, 40, 1161-1171. https://doi.org/10.1617/s11527-007-9258-5
  14. Frias, M., de Rojas, M. I. S., & Carbrera, J. (2000). The effect that the pozzolanic reaction of metakaolin has on the heat of evolution in metakaolin cement mortars. Cement and Concrete Research, 30, 209-216. https://doi.org/10.1016/S0008-8846(99)00231-8
  15. Ghrici, M., et al. (2007). Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cement & Concrete Composites, 29, 542-549. https://doi.org/10.1016/j.cemconcomp.2007.04.009
  16. Guneyisi, E., Gesoglu, M., & Mermerdas, K. (2008). Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Materials and Structures, 41, 937-949. https://doi.org/10.1617/s11527-007-9296-z
  17. Janotka, I. (1999). The influence of zeolitic cement and sand on resistance of mortar subjected to hydrochloric acid solution attack. Ceramics-Silikaty, 43(2), 61-66.
  18. Kostuch, J.,Walters, A., & Jones, G. V. (1993). High performance concrete incorporating metakaolin-a review. In Concrete 2000. University of Dundee, Dundee, UK (pp. 1799-1811).
  19. Kouloumbi, N., Batis, G., & Pantasopoulou, P. (1995). Efficiency of natural Greek pozzolan in chloride-induced corrosion of steel reinforcement. Cement Concrete & Aggregates, 17(1), 18-25. https://doi.org/10.1520/CCA10332J
  20. Massazza, F. (1993). Pozzolanic cements. Cement and Concrete Composites, 15(4), 185-214. https://doi.org/10.1016/0958-9465(93)90023-3
  21. Meck, E., & Sirivivatnanon, V. (2003). Field indicator of chloride penetration depth. Cement and Concrete Research, 33, 1113-1117. https://doi.org/10.1016/S0008-8846(03)00012-7
  22. Mehta, P. K. (1981). Studies on blended Portland cements containing Santorin earth. Cement and Concrete Research, 11(4), 507-518. https://doi.org/10.1016/0008-8846(81)90080-6
  23. Michel, V. (1989). La pratique des ciments, mortiers et betons'. Edition le moniteur.
  24. NF P 15-403. (1996). Sable normal et mortier normal. AFNOR, Paris.
  25. NF P 15-411. (1996). Malaxeur. AFNOR, Paris, France.
  26. NFP 15-400. (1996). Resistance a la flexion. Paris, France: AFNOR.
  27. NFP 15-401. (1996). Resistance a la compression. Paris, France: AFNOR.
  28. Nkinamubanzi, P. C., & Aitcin, P. C. (2000). L'utilisation du laitier dans la fabrication du ciment et du beton. Ciments, Betons, Platres et Chaux, 843(2), 116-125.
  29. Otsuki, N., Nagataki, S., & Nakashita, K. (1992). Evaluation of ${AgNO_3}$ nitrate solution spray method for measurement of chloride penetration into the hardened cementitious matrix materials. ACI Materials Journal, 89(6), 587-592.
  30. Poon, C. S., Lam, L., Kou, S. C., Wong, Y. L., & Wong, R. (2001). Rate of pozzolanic reaction of metakaolin in high performance cement pastes. Cement and Concrete Research, 31, 1301-1306. https://doi.org/10.1016/S0008-8846(01)00581-6
  31. Ramezanianpour, A. A. (1987). Engineering properties and morphology of pozzolanic cement-concrete. PhD Thesis, University of Leeds, Leeds, UK.
  32. Rodriguez-Camacho, R. E. (1998). Using natural pozzolans to improve the sulfate resistance of cement mortars. In V. M. Malhotra (Ed.), International conference, Bangkok, Thailand ACI SP-178 (pp. 1021-1039).
  33. Rossignolo, J. A., & Agnesini, M. V. C. (2004). Durabilty of polymer-modified lightweight aggregate concrete. Cement and Concrete Composites, 26, 375-380. https://doi.org/10.1016/S0958-9465(03)00022-2
  34. Sabir, B. B., Wild, S., & Khatib, J. M. (1996). On the workability and strength development of metakaolin concrete. In Proceeding of the international conference concrete in the service of mankind, environmental enhancement and protection, Dundee, UK (pp. 651-662).
  35. Sabir, B. B., Wild, S., & Bai, J. (2001). Metakaolin and calcined clays as pozzolans for concrete: A review. Cement and Concrete Composites, 23, 441-454. https://doi.org/10.1016/S0958-9465(00)00092-5
  36. Safi, B., Benmounah, A., & Saidi, M. (2011). Rheology and zeta potential of cement pastes containing calcined silt and ground granulated blast-furnace slag. Materiaux de Construction, 61(303), 353-370. https://doi.org/10.3989/mc.2011.61110
  37. Safi, B., Yurtdas, I., & Li, A. (2012). Use of silt of dams as a supplementary cementitious material in self-compacting mortars: Effect on physical and mechanical properties. In 12th International multidisciplinary scientific geoconference & EXPO SGEM, Albena.
  38. Said-Mansour, M., et al. (2005). Effets de la combinaison de la pouzzolane et du calcaire sur les proprietes des mortiers et des betons. In Congres international Rehabilitation des Constructions et Developpement Durable, Alger 3 et 4 Mai 2005.
  39. Samet, B., Mnif, T., & Chaabouni, M. (2007). Use of a kaolinitic clay as a pozzolanic material for cements: formulation of blended cement. Cement and Concrete Composites, 29(10), 741-749. https://doi.org/10.1016/j.cemconcomp.2007.04.012
  40. Sayanam, R. A., Kalsotra, A. K., Mehta, S. K., Sing, R. S., & Mandal, G. (1989). Studies on thermal transformations and pozzolanic activities of clay from Jammu region (India). Journal of Thermal Analysis, 35, 9-106.
  41. Shvarzman, A., Kovler, K., Schamban, I., Grader, G., & Shter, G. (2002). Influence of chemical and phase composition of mineral admixtures on their pozzolanic activity. Advances in Cement Research, 14(1), 35-41. https://doi.org/10.1680/adcr.2002.14.1.35
  42. Tagnit-Hamou, A., Pertove, N., & Luke, K. (2003). Properties of concrete containing diatomaceous earth. ACI Materials Journal, 100(1), 73-78.
  43. Thomas, M. (1996). Chloride thresholds in marine concrete. Cement and Concrete Research, 26(4), 513-519. https://doi.org/10.1016/0008-8846(96)00035-X
  44. UNI 79287. (December 1978). Concrete-determination of the ion chloride penetration. UNI-Ente Nazionale Italiano Di Unificazione, Milano, Italy piazza A. Diaz, 2.
  45. Wee, T. H., Suryavanshi, A. K., & Tin, S. S. (1999). Influence of aggregate fraction in the mix on the reliability of the rapid chloride permeability test. Cement and Concrete Composites, 21, 59-72. https://doi.org/10.1016/S0958-9465(98)00039-0
  46. Wee, T. H., Suryavanshi, A. K., & Tin, S. S. (2000). Evaluation of rapid chloride permeability test (RCPT) results for concrete containing mineral admixtures. ACI Materials Journal, 97(2), 221-232.
  47. Wild, S., & Khatib, J. M. (1997). Portlandite consumption in metakaolin cement pastes and mortars. Cement and Concrete Research, 27(1), 137-146. https://doi.org/10.1016/S0008-8846(96)00187-1
  48. Zhang, M. H., & Malhotra, V. M. (1995). Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete. Cement and Concrete Research, 25(8), 1713-1725. https://doi.org/10.1016/0008-8846(95)00167-0
  49. Zivika, V., & Bajz, A. (2002). Acidic attack of cement-based materials-a review. Part 2. Factors of rate of acidic attack and protective measures. Construction and Building Materials, 16(4), 215-222. https://doi.org/10.1016/S0950-0618(02)00011-9

Cited by

  1. Caractérisation de sédiments du barrage de l’Oued Fodda et leur valorisation comme un ajout artificiel dans le ciment vol.104, pp.3, 2016, https://doi.org/10.1051/mattech/2016025
  2. Fresh and hardened properties of green binder concrete containing marble powder and brick powder vol.20, pp.1, 2014, https://doi.org/10.1080/19648189.2016.1246692
  3. Ability of Two Dam Fine-Grained Sediments to be Used in Cement Industry as Raw Material for Clinker Production and as Pozzolanic Additional Constituent of Portland-Composite Cement vol.8, pp.6, 2014, https://doi.org/10.1007/s12649-017-9870-8
  4. Effect of Scoria on Various Specific Aspects of Lightweight Concrete vol.11, pp.3, 2014, https://doi.org/10.1007/s40069-017-0204-9
  5. Evaluation of Pozzolanic Activity for Effective Utilization of Dredged Sea Soil vol.11, pp.4, 2014, https://doi.org/10.1007/s40069-017-0215-6
  6. Effect of natural pozzolan on the fresh and hardened cement slurry properties for cementing oil well vol.15, pp.4, 2014, https://doi.org/10.1108/wje-10-2017-0337
  7. Response of Concrete to Incremental Aggression of Sulfuric Acid vol.48, pp.4, 2019, https://doi.org/10.1520/jte20180114