References
- Al Rawas, A. A., Hago, A. W., Al Lawati, D., & Al Battashi, A. (2001). The Omani artificial pozzolans (Sarooj). Cement Concrete & Aggregates, 23(1), 19-26. https://doi.org/10.1520/CCA10521J
- Alonso, C., Andrade, C., Castellote, M., & Castro, P. (2000). Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar. Cement and Concrete Research, 30(7), 1047-1055. https://doi.org/10.1016/S0008-8846(00)00265-9
- Ambroise, J., Murat, M., & Pera, J. (1986). Investigations on synthetic binders obtained by middle-temperature thermal dissication of clay minerals. Silicates Industries, 7(8), 99-107.
- Ambroise, J., Martingale, S., & Pera, J. (1992). Pozzolanic behavior of thermally activated kaolin. In 4th International conference of fly ash, silica fume, slag and natural pozzolans in concrete, Istanbul, Turkey (pp. 731-748).
- Aquino, W., Lange, D. A., & Olek, J. (2001). The influence of metakaolin and silica fume on the chemistry of alkali-silica reaction products. Cement and Concrete Composites, 23(6), 485-493. https://doi.org/10.1016/S0958-9465(00)00096-2
- ASTM C 267-96. (October 2001). Standard test methods for chemical resistance of mortars, grouts, and monolithic surfacings and polymer concretes. Annual book of ASTM standards. West Conshohocken, PA: ASTM International.
- ASTM C 618. (January 2000). Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete. Annual book of ASTM standards. West Conshohocken, PA: ASTM International.
- Bager, G. S., Hansen, E. R., Wood, M. R., Neary, T., Beech, D. J., & Jaquier, D. (2001). Production and use of calcined natural pozzolans in concrete. Cement, Concrete & Aggregates, 23(2), 73-80. https://doi.org/10.1520/CCA10478J
- Baronio, G., & Binda, L. (1997). Study of the pozzolanicity of some bricks and clays. Construction and Building Materials, 11(1), 70-78.
- Benoit, O. (1969) Determination de l'activite pouzzolanique d'une pouzzolane par voie Chimique. Bull liaison labo. P. et Ch., 126, D1-D5.
- Butler, W. B. (1982). A critical look at ASTMC and C311, cement, concrete and aggregates. CCAGDP, 14(2), 68-72.
- Chinje, M., & Billong, N. (2004). Activite pouzzolanique des dechets de briques et tuiles cuites. African Journal of Science and Technology (AJST), Science and Engineering Series, 5(1), 92-100.
- Erhan, G., & Kasim, M. (2007). Comparative study on strength, sorptivity, and chloride ingress characteristics of air-cured and water-cured concretes modified with metakaolin. Materials and Structures, 40, 1161-1171. https://doi.org/10.1617/s11527-007-9258-5
- Frias, M., de Rojas, M. I. S., & Carbrera, J. (2000). The effect that the pozzolanic reaction of metakaolin has on the heat of evolution in metakaolin cement mortars. Cement and Concrete Research, 30, 209-216. https://doi.org/10.1016/S0008-8846(99)00231-8
- Ghrici, M., et al. (2007). Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cement & Concrete Composites, 29, 542-549. https://doi.org/10.1016/j.cemconcomp.2007.04.009
- Guneyisi, E., Gesoglu, M., & Mermerdas, K. (2008). Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Materials and Structures, 41, 937-949. https://doi.org/10.1617/s11527-007-9296-z
- Janotka, I. (1999). The influence of zeolitic cement and sand on resistance of mortar subjected to hydrochloric acid solution attack. Ceramics-Silikaty, 43(2), 61-66.
- Kostuch, J.,Walters, A., & Jones, G. V. (1993). High performance concrete incorporating metakaolin-a review. In Concrete 2000. University of Dundee, Dundee, UK (pp. 1799-1811).
- Kouloumbi, N., Batis, G., & Pantasopoulou, P. (1995). Efficiency of natural Greek pozzolan in chloride-induced corrosion of steel reinforcement. Cement Concrete & Aggregates, 17(1), 18-25. https://doi.org/10.1520/CCA10332J
- Massazza, F. (1993). Pozzolanic cements. Cement and Concrete Composites, 15(4), 185-214. https://doi.org/10.1016/0958-9465(93)90023-3
- Meck, E., & Sirivivatnanon, V. (2003). Field indicator of chloride penetration depth. Cement and Concrete Research, 33, 1113-1117. https://doi.org/10.1016/S0008-8846(03)00012-7
- Mehta, P. K. (1981). Studies on blended Portland cements containing Santorin earth. Cement and Concrete Research, 11(4), 507-518. https://doi.org/10.1016/0008-8846(81)90080-6
- Michel, V. (1989). La pratique des ciments, mortiers et betons'. Edition le moniteur.
- NF P 15-403. (1996). Sable normal et mortier normal. AFNOR, Paris.
- NF P 15-411. (1996). Malaxeur. AFNOR, Paris, France.
- NFP 15-400. (1996). Resistance a la flexion. Paris, France: AFNOR.
- NFP 15-401. (1996). Resistance a la compression. Paris, France: AFNOR.
- Nkinamubanzi, P. C., & Aitcin, P. C. (2000). L'utilisation du laitier dans la fabrication du ciment et du beton. Ciments, Betons, Platres et Chaux, 843(2), 116-125.
-
Otsuki, N., Nagataki, S., & Nakashita, K. (1992). Evaluation of
${AgNO_3}$ nitrate solution spray method for measurement of chloride penetration into the hardened cementitious matrix materials. ACI Materials Journal, 89(6), 587-592. - Poon, C. S., Lam, L., Kou, S. C., Wong, Y. L., & Wong, R. (2001). Rate of pozzolanic reaction of metakaolin in high performance cement pastes. Cement and Concrete Research, 31, 1301-1306. https://doi.org/10.1016/S0008-8846(01)00581-6
- Ramezanianpour, A. A. (1987). Engineering properties and morphology of pozzolanic cement-concrete. PhD Thesis, University of Leeds, Leeds, UK.
- Rodriguez-Camacho, R. E. (1998). Using natural pozzolans to improve the sulfate resistance of cement mortars. In V. M. Malhotra (Ed.), International conference, Bangkok, Thailand ACI SP-178 (pp. 1021-1039).
- Rossignolo, J. A., & Agnesini, M. V. C. (2004). Durabilty of polymer-modified lightweight aggregate concrete. Cement and Concrete Composites, 26, 375-380. https://doi.org/10.1016/S0958-9465(03)00022-2
- Sabir, B. B., Wild, S., & Khatib, J. M. (1996). On the workability and strength development of metakaolin concrete. In Proceeding of the international conference concrete in the service of mankind, environmental enhancement and protection, Dundee, UK (pp. 651-662).
- Sabir, B. B., Wild, S., & Bai, J. (2001). Metakaolin and calcined clays as pozzolans for concrete: A review. Cement and Concrete Composites, 23, 441-454. https://doi.org/10.1016/S0958-9465(00)00092-5
- Safi, B., Benmounah, A., & Saidi, M. (2011). Rheology and zeta potential of cement pastes containing calcined silt and ground granulated blast-furnace slag. Materiaux de Construction, 61(303), 353-370. https://doi.org/10.3989/mc.2011.61110
- Safi, B., Yurtdas, I., & Li, A. (2012). Use of silt of dams as a supplementary cementitious material in self-compacting mortars: Effect on physical and mechanical properties. In 12th International multidisciplinary scientific geoconference & EXPO SGEM, Albena.
- Said-Mansour, M., et al. (2005). Effets de la combinaison de la pouzzolane et du calcaire sur les proprietes des mortiers et des betons. In Congres international Rehabilitation des Constructions et Developpement Durable, Alger 3 et 4 Mai 2005.
- Samet, B., Mnif, T., & Chaabouni, M. (2007). Use of a kaolinitic clay as a pozzolanic material for cements: formulation of blended cement. Cement and Concrete Composites, 29(10), 741-749. https://doi.org/10.1016/j.cemconcomp.2007.04.012
- Sayanam, R. A., Kalsotra, A. K., Mehta, S. K., Sing, R. S., & Mandal, G. (1989). Studies on thermal transformations and pozzolanic activities of clay from Jammu region (India). Journal of Thermal Analysis, 35, 9-106.
- Shvarzman, A., Kovler, K., Schamban, I., Grader, G., & Shter, G. (2002). Influence of chemical and phase composition of mineral admixtures on their pozzolanic activity. Advances in Cement Research, 14(1), 35-41. https://doi.org/10.1680/adcr.2002.14.1.35
- Tagnit-Hamou, A., Pertove, N., & Luke, K. (2003). Properties of concrete containing diatomaceous earth. ACI Materials Journal, 100(1), 73-78.
- Thomas, M. (1996). Chloride thresholds in marine concrete. Cement and Concrete Research, 26(4), 513-519. https://doi.org/10.1016/0008-8846(96)00035-X
- UNI 79287. (December 1978). Concrete-determination of the ion chloride penetration. UNI-Ente Nazionale Italiano Di Unificazione, Milano, Italy piazza A. Diaz, 2.
- Wee, T. H., Suryavanshi, A. K., & Tin, S. S. (1999). Influence of aggregate fraction in the mix on the reliability of the rapid chloride permeability test. Cement and Concrete Composites, 21, 59-72. https://doi.org/10.1016/S0958-9465(98)00039-0
- Wee, T. H., Suryavanshi, A. K., & Tin, S. S. (2000). Evaluation of rapid chloride permeability test (RCPT) results for concrete containing mineral admixtures. ACI Materials Journal, 97(2), 221-232.
- Wild, S., & Khatib, J. M. (1997). Portlandite consumption in metakaolin cement pastes and mortars. Cement and Concrete Research, 27(1), 137-146. https://doi.org/10.1016/S0008-8846(96)00187-1
- Zhang, M. H., & Malhotra, V. M. (1995). Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete. Cement and Concrete Research, 25(8), 1713-1725. https://doi.org/10.1016/0008-8846(95)00167-0
- Zivika, V., & Bajz, A. (2002). Acidic attack of cement-based materials-a review. Part 2. Factors of rate of acidic attack and protective measures. Construction and Building Materials, 16(4), 215-222. https://doi.org/10.1016/S0950-0618(02)00011-9
Cited by
- Caractérisation de sédiments du barrage de l’Oued Fodda et leur valorisation comme un ajout artificiel dans le ciment vol.104, pp.3, 2016, https://doi.org/10.1051/mattech/2016025
- Fresh and hardened properties of green binder concrete containing marble powder and brick powder vol.20, pp.1, 2014, https://doi.org/10.1080/19648189.2016.1246692
- Ability of Two Dam Fine-Grained Sediments to be Used in Cement Industry as Raw Material for Clinker Production and as Pozzolanic Additional Constituent of Portland-Composite Cement vol.8, pp.6, 2014, https://doi.org/10.1007/s12649-017-9870-8
- Effect of Scoria on Various Specific Aspects of Lightweight Concrete vol.11, pp.3, 2014, https://doi.org/10.1007/s40069-017-0204-9
- Evaluation of Pozzolanic Activity for Effective Utilization of Dredged Sea Soil vol.11, pp.4, 2014, https://doi.org/10.1007/s40069-017-0215-6
- Effect of natural pozzolan on the fresh and hardened cement slurry properties for cementing oil well vol.15, pp.4, 2014, https://doi.org/10.1108/wje-10-2017-0337
- Response of Concrete to Incremental Aggression of Sulfuric Acid vol.48, pp.4, 2019, https://doi.org/10.1520/jte20180114