DOI QR코드

DOI QR Code

Simulation of Solitary Wave-Induced Dynamic Responses of Soil Foundation Around Vertical Revetment

고립파 작용하 직립호안 주변에서 지반의 동적응답에 관한 수치시뮬레이션

  • Lee, Kwang-Ho (Dept. of Energy Resources and Plant Eng., Catholic Kwandong Univ.) ;
  • Yuk, Seung-Min (Dept. of Civil and Environmental Eng., Korea Maritime and Ocean Univ.) ;
  • Kim, Do-Sam (Dept. of Civil Eng., Korea Maritime and Ocean Univ.) ;
  • Kim, Tae-Hyeong (Dept. of Civil Eng., Korea Maritime and Ocean Univ.) ;
  • Lee, Yoon-Doo (Dept. of Civil and Environmental Eng., Korea Maritime and Ocean Univ.)
  • 이광호 (가톨릭관동대학교 에너지자원플랜트공학과) ;
  • 육승민 (한국해양대학교 대학원 토목환경공학과) ;
  • 김도삼 (한국해양대학교 건설공학과) ;
  • 김태형 (한국해양대학교 건설공학과) ;
  • 이윤두 (한국해양대학교 대학원 토목환경공학과)
  • Received : 2014.11.16
  • Accepted : 2014.12.24
  • Published : 2014.12.31

Abstract

Tsunami take away life, wash houses away and bring devastation to social infrastructures such as breakwaters, bridges and ports. The targeted coastal structure object in this study can be damaged mainly by the tsunami force together with foundation ground failure due to scouring and liquefaction. The increase of excess pore water pressure composed of oscillatory and residual components may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, the solitary wave was generated using 2D-NIT(Two-Dimensional Numerical Irregular wave Tank) model, and the dynamic wave pressure acting on the seabed and the estimated surface boundary of the vertical revetment. Simulation results were used as an input data in a finite element computer program(FLIP) for elasto-plastic seabed response. The time and spatial variations in excess pore water pressure, effective stress, seabed deformation, structure displacement and liquefaction potential in the seabed were estimated. From the results of the analysis, the stability of the vertical revetment was evaluated.

지진해일파(tsunami)에 의한 피해로 소중한 인명손실뿐만 아니라 침수 범람에 의한 가옥과 같은 건물의 유실 및 방파제, 교량 및 항만과 같은 사회간접자본의 심각한 파괴 등을 들 수 있다. 본 연구의 대상인 연안구조물에서 피해원인으로 먼저 큰 지진해일파력을 고려할 수 있지만, 더불어 기초지반에서 세굴과 액상화와 같은 지반파괴를 고려할 수 있다. 진동성분과 잔류성분으로 구성되는 과잉간극수압의 증가에 따른 유효응력의 감소로 해저지반내에 액상화의 가능성이 나타나고, 액상화가 발생되면 그의 진행에 따라 구조물의 침하 혹은 전도에 의해 종국적으로 구조물이 파괴될 가능성이 높아지게 된다. 본 연구에서는 2D-NIT(Two-Dimensional Numerical Irregular wave Tank)모델로 부터 고립파를 조파시켜 직립호안 및 해저지반상에서 시간변동의 동파압을 산정하고, 그 결과를 지반의 동적응답과 구조물의 동적거동을 정밀하게 재현할 수 있는 유한요소법에 기초한 탄 소성해저지반응답의 수치해석프로그램인 FLIP(Finite element analysis LIquefaction Program)모델에 입력치로 적용하여 해저지반 및 직립호안의 주변에서 과잉간극수압 및 유효응력의 시 공간변화, 지반변형, 구조물의 변위 및 지반액상화 등을 정량적으로 평가하여 직립호안의 안정성을 평가한다.

Keywords

References

  1. Brorsen, M. and Larsen, J. (1987). Source generation of nonlinear gravity waves with boundary integral equation method, Coastal Eng., 11, 93-113. https://doi.org/10.1016/0378-3839(87)90001-9
  2. De Groot, M.B. and Meijers, P. (2004). Wave induced liquefaction underneath gravity structures, Intl. Conference on Cyclic Behaviour of Soils and Liquefaction Phenomena, 399-406.
  3. Fenton, J. (1972). A ninth-order solution for the solitary wave, J. of Fluid Mech., 53(2), 257-271. https://doi.org/10.1017/S002211207200014X
  4. Grimshaw, R. (1971). The solitary wave in water of variable depth: Part 2, J. of Fluid Mech., 46, 611-622. https://doi.org/10.1017/S0022112071000739
  5. Iai, S., Matsunaga, Y. and Kameoka, T. (1992a). Strain space plasticity model for cyclic mobility, Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Eng., 32(2), 1-15.
  6. Iai, S., Matsunaga, Y. and Kameoka, T. (1992b). Analysis of undrained cyclic behavior of sand under anisotropic consolidation, Soils and Foundation, Japanese Society of Soil Mechanics and Foundation Eng., 32(2), 16-20.
  7. Ishihara, K. and Yamazaki, A.(1984). Analysis of wave-induced liquefaction in seabed deposits of sand, Soils and Foundations, 24(3), 85-10. https://doi.org/10.3208/sandf1972.24.3_85
  8. Imase, T., Maeda, K. and Miyake, M. (2012). Destabilization of a caisson-type breakwater by scouring and seepage failure of the seabed due to a tsunami, ICSE6-128, 807-814.
  9. Kang, G.C., Yun, S.K., Kim, T.H. and Kim, D.S. (2013). Numerical analysis on settlement behavior of seabed sand-coastal structure subjected to wave loads, Journal of Korean Society of Coastal and Ocean Engineers, 25(1), 20-27. https://doi.org/10.9765/KSCOE.2013.25.1.20
  10. Li, J. and Jeng, D.S. (2008). Response of a porous seabed around breakwater heads, Ocean Eng., 35, 864-886. https://doi.org/10.1016/j.oceaneng.2008.01.021
  11. Lee, K.L. and Focht, J.A.(1975). Liquefaction potential of Ekofisk Tank in North Sea, J. of the Geotechnical Eng. Division, ASCE, 100, 1-18.
  12. Lee, K.H., Park, J.H., Cho, S. and Kim, D.S. (2013). Numerical simulation of irregular airflow in OWC wave generation system considering sea water exchange, J. of Korean Society of Coastal and Ocean Engineers, 25(3), 128-137. https://doi.org/10.9765/KSCOE.2013.25.3.128
  13. Lee, K.H., Baek, D.J., Kim, D.S., Kim, T.H. and Bae, K.S. (2014a). Numerical simulation on seabed-structure dynamic responses due to the interaction between waves, seabed and coastal structure, J. of Korean Society of Coastal and Ocean Engineers, 26(1), 49-64. https://doi.org/10.9765/KSCOE.2014.26.1.49
  14. Lee, K.H., Baek, D.J., Kim, D.S., Kim, T.H. and Bae, K.S. (2014b). Numerical simulation of dynamic response of seabed and structure due to the interaction among seabed, composite breakwater and irregular waves(1), J. of Korean Society of Coastal and Ocean Engineers, 26(3), 160-173. https://doi.org/10.9765/KSCOE.2014.26.3.160
  15. Lee, K.H., Baek, D.J., Kim, D.S., Kim, T.H. and Bae, K.S. (2014c). Numerical simulation of dynamic response of seabed and structure due to the interaction among seabed, composite breakwater and irregular waves(2), J. of Korean Society of Coastal and Ocean Engineers, 26(3), 174-183. https://doi.org/10.9765/KSCOE.2014.26.3.174
  16. Lee, K.H., Lee, S.K., Shin, D.H. and Kim. D.S. (2008). 3-Dimensional analysis for nonlinear wave forces acting on dual vertical columns and their nonlinear wave transformations, J. of Korean Society of Coastal and Ocean Engineers, 20(1), 1-13.
  17. Mase, H., Sakai, T. and Sakamoto, M. (1994). Wave-induced porewater pressures and effective stresses around breakwater, Ocean Eng., 21(4), 361-379. https://doi.org/10.1016/0029-8018(94)90010-8
  18. Miyake, T., Sumida, H., Maeda, K., Sakai, H., and Imase, T. (2009). Development of centrifuge modelling for tsunami and its application to stability of a caisson-type breakwater, J. of Civil Eng. in the Ocean, 25, 87-92.
  19. Miyamoto, J., Sassa, S. and Sekiguchi, H. (2004). Progressive solidification of a liquefied sand layer during continued wave loading, Geotechnique, 54(10), 617-629. https://doi.org/10.1680/geot.2004.54.10.617
  20. Ozutsmi, O., Sawada, S., Iai, S., Takeshima, Y., Sugiyama, W. and Shimasu, T. (2002). Effective stress analysis of liquefactioninduced deformation in river dikes, J. of Soil Dynamics and Earthquake Eng., 22, 1075-1082. https://doi.org/10.1016/S0267-7261(02)00133-1
  21. Rahman, M. S., Seed, H. B. and Booker, J. R.(1977). Pore pressure development under offshore gravity structures, J. of the Geotechnical Eng. Division, ASCE, 103, 1419-1436.
  22. Sassa, S. and Sekiguchi, H. (1999). Analysis of wave-induced liquefaction of beds of sand in centrifuge, Geotechnique, 49(5), 621-638. https://doi.org/10.1680/geot.1999.49.5.621
  23. Sassa, S. and Sekiguchi, H. (2001). Analysis of wave-induced liquefaction of sand beds, Geotechnique, 51(12), 115-126. https://doi.org/10.1680/geot.2001.51.2.115
  24. Sassa, S., Sekiguchi, H. and Miyamoto, J. (2001). Analysis of progressive liquefaction as a moving-boundary problem, Geotechnique, 51(10), 847-857. https://doi.org/10.1680/geot.2001.51.10.847
  25. Sakakiyama, T. and Kajima, R. (1992). Numerical simulation of nonlinear wave interaction with permeable breakwater, Proceedings of the 22nd ICCE, ASCE, 1517-1530.
  26. Sawada, S., Ozutsumi, O. and Iai, S. (2000). Analysis of liquefaction induced residual deformation for two types of quay wall: analysis by "FLIP", Proceedings of the 12th World Conference on Earthquake Eng., 2486.
  27. The Japanese Central Disaster Prevention Council (2012). Investigative commission of giant earthquake model of Nankai trough, The 16th, About proceedings summary, http://www.bousai.go.jp/jishin/chubou/nankai/16/.
  28. Tonkin, S., H. Yeh, F. Kato, and S. Sato (2003). Tsunami scour around a cylinder, J. of Fluid Mech., 496, 165-192. https://doi.org/10.1017/S0022112003006402
  29. Ulker, M.B.C, Rahman, M.S. and Guddati, M.N. (2010). Waveinduced dynamic response and instability of seabed around caisson breakwater, Ocean Eng., 37, 1522-1545. https://doi.org/10.1016/j.oceaneng.2010.09.004
  30. Ye, J., Jeng, D., Liu, P. L.-F., Chan, A.H.C, Ren, W. and Changqi, Z. (2014). Breaking wave-induced response of composite breakwater and liquefaction in seabed foundation, Coastal Eng., 85, 72-86. https://doi.org/10.1016/j.coastaleng.2013.08.003
  31. Yeh, H. and Mason, H.B. (2014). Sediment response to tsunami loading : mechanisms and estimates, Geotechnique, 64(2), 131-143. https://doi.org/10.1680/geot.13.P.033
  32. Young, Y.L., White, J.A., Xiao, H., Borja, R.I.(2009). Liquefaction potential of coastal slopes induced by solitary waves. Acta Geotechnica, 4 (1), 17n34.