DOI QR코드

DOI QR Code

Effect of Sealing Materials and Parameters on the Corrosion Resistance of HVOF-Sprayed CrC-NiCr Coatings

실링재 및 실링방법이 HVOF 용사된 CrC-NiCr 코팅의 내식성에 미치는 영향

  • Jeong, Younghun (Surface Technology Department, Korea Institute of Materials and Science) ;
  • Nam, Uk-Hee (Surface Technology Department, Korea Institute of Materials and Science) ;
  • Byon, Eungsun (Surface Technology Department, Korea Institute of Materials and Science) ;
  • Kang, Tae-Il (Hydraulic Machinery Division, Dongyang Mechatronics) ;
  • Kang, Chung-Yun (School of Materials Science and Engineering, Pusan National University)
  • 정영훈 (재료연구소 표면기술연구본부 플라즈마코팅연구실) ;
  • 남욱희 (재료연구소 표면기술연구본부 플라즈마코팅연구실) ;
  • 변응선 (재료연구소 표면기술연구본부 플라즈마코팅연구실) ;
  • 강태일 (동양기전(주) 유압기기사업부, 연구개발팀) ;
  • 강정윤 (부산대학교 공과대학 재료공학부)
  • Received : 2014.10.17
  • Accepted : 2014.12.01
  • Published : 2014.12.31

Abstract

Effects of sealant and sealing procedure on corrosion resistance of high velocity oxy-fuel (HVOF) sprayed coatings were studied. HVOF-sprayed CrC-20NiCr coatings were sealed using three commercial sealants based on phenolics and epoxy. Penetration depth of sealants, measured by fluorescent microscope technique, was between $19{\mu}m$ and $340{\mu}m$ depending on sealant, sealing condition or sealing procedure. It was found that sealing on rotation status was more effective than that on stationary specimen due to the Coriolis effect of fluid in pores of the coating. From the CASS results, corrosion resistance of properly sealed CrC-20NiCr coatings was equal to that of hexa-valent chromium plating.

Keywords

References

  1. S. C. Kwon, K. H. Lee, Trends in Metals & Materials Engineering, 17 (2004) 16.
  2. M. Kim, J.J. Lee, D. Y. Kim, S. U. Park, S. C. Kwon, J. Kor. Inst. Surf. Eng., 37(3) (2004) 179.
  3. D. Kim, M. Kim, S. U. Park, K. S. Nam, D. Y. Chang, S. C. Kwon, D. S. Shin, J. Kor. Inst. Surf. Eng., 34 (2001) 49.
  4. K. O. Legg, M. Graham, P. Chang, F. Rastagar, A. Gonzales, B. Sartwell, Surf. Coat. Technol., 81 (1996) 99. https://doi.org/10.1016/0257-8972(95)02653-3
  5. R.S. Lima, B.R. Marple, J. of Thermal Spray Technol., 16 (2007) 40. https://doi.org/10.1007/s11666-006-9010-7
  6. Y.-H. Yang, C.-Y. Park, W.-J. Lee, S.-J. Kim, S.- M. Lee, S. Kim, H.-T. Kim, Y.-S. Oh, J. Kor. Inst. Surf. Eng., 46 (2013) 258. https://doi.org/10.5695/JKISE.2013.46.6.258
  7. B. Flitney, Sealing Technology, October (2007) 8.
  8. P. Ctibor, K. Neufuss, F. Zahalka, B. Kolman, Wear, 262 (2007) 1274. https://doi.org/10.1016/j.wear.2007.01.005
  9. H. Kim, C. Lee, Y. Kweon, Surf. Coat. Technol., 139 (2001) 75. https://doi.org/10.1016/S0257-8972(00)01132-4
  10. Y. Jung, S.-J. Moon, H. Yoo, The Plant Journal, 6 (2010) 63.
  11. J. Knuuttila, P. Sorsa, and T. Mantyla, J. of Thermal Spray Techno., 8 (1999) 249. https://doi.org/10.1007/s11666-999-0002-2
  12. C. L. Li, H. X. Zhao, T. Takahashi, M. Matsumura, Mater. Sci. Engin., A308 (2001) 268.
  13. M. Oksa, E. Turunen, T. Varis, Thermal Spray 2004: Advances in Technology and Applications (ASM International) No. 5 (2004) 120.
  14. Y. Wang, S. L. Jiang, Y. G. Zheng, W. Ke, W. H. Sun, J. Q. Wang, Surf. Coat. Technol., 206 (2011) 1307. https://doi.org/10.1016/j.surfcoat.2011.08.045
  15. S. Liscanoa, L. Gil, M. H. Staia, Surf. Coat. Technol., 188-189 (2004) 135. https://doi.org/10.1016/j.surfcoat.2004.08.009
  16. "Copper Accelerated Acetic Acid Salt Spray Testing Method" ASTM B368 (2014).
  17. R. Chattopadhyay, Surface Wear: Analysis, Treatment, and Prevention. Materials Park, OH: ASM Int., (2001) 228.
  18. B. Wielage, U. Hofmann, S. Steinhauser, and G. Zimmermann, Surf. Coat. Technol., 2 (1998) 136.
  19. S. Ahmaniemi, P. Vuoristo, T. Mantyla, Surf. Coat. Technol. 151-152 (2002) 412. https://doi.org/10.1016/S0257-8972(01)01643-7
  20. R. B. Badachhape, M. K. Gharpurey, A. B. Biswas, J. Chemical and Engin. Data, 10(2) (1965) 143. https://doi.org/10.1021/je60025a022
  21. C-H Cheng, H-H Lin, IEEE Transactions on Adv. Packaging, 31(1) (2008) 100. https://doi.org/10.1109/TADVP.2007.901767