DOI QR코드

DOI QR Code

베타과정과 베이지안 생존분석

Beta Processes and Survival Analysis

  • Kim, Yongdai (Department of Statistics, Seoul National University) ;
  • Chae, Minwoo (Department of Statistics, Seoul National University)
  • 투고 : 2014.10.21
  • 심사 : 2014.11.19
  • 발행 : 2014.12.31

초록

Hjort (1990)가 제안한 베타과정은 베이지안 생존분석 또는 사건사 분석에서 널리 쓰이는 사전분포이다. 본 논문은 베타과정에 대한 최신 이론과 이를 기반으로 하는 베이지안 생존자료분석 방법을 주로 다룬다. 구체적으로는 베타과정의 생성법, 사후 분포, 대표본 이론, 베이지안 계산법, 혼합베타과정 등을 소개하기로 한다.

This article is concerned with one of the most important prior distributions for Bayesian analysis of survival and event history data, called Beta processes, proposed in Hjort (1990). We review the current state of the art of beta processes and their application to survival analysis. Relevant methodological and practical areas of research that we touch on relate to constructions, posterior distributions, large-sample properties, Bayesian computations, and mixtures of Beta processes.

키워드

참고문헌

  1. Andersen, P. K., Borgan, O, Gill, R. D. and Keiding, N. (1993). Statistical Models Based on Counting Processes, Springer, New York.
  2. Barron, A. R. (1988). The exponential convergence of posterior probabilities with implications for Bayes estimators of density functions, Technical report, University of Illinois.
  3. Barron, A., Schervish, M. J. and Wasserman, L. (1999). The consistency of posterior distributions in nonparametric problems, Annals of Statistics, 27, 536-561. https://doi.org/10.1214/aos/1018031206
  4. Damien, P., Laud, P. W. and Smith, A. F. M. (1996). Implementation of Bayesian non-parametric inference based on Beta processes, Scandinavian Journal of Statistics, 23, 27-36.
  5. De Blasi, P., Favaro, S. and Muliere, P. (2009). A class of neutral to the right priors induced by superposition of beta processes, Working paper of Collegio Carlo Alberto.
  6. De Blasi, P., Hjort, N. L. (2007). Bayesian survival analysis in proportional hazard models with logistic relative risks, Scandinavian Journal of Statistics, 34, 229-257. https://doi.org/10.1111/j.1467-9469.2006.00543.x
  7. Diaconis, P. and Freedman, D. A. (1986). On the consistency of Bayes estimates, Annals of Statistics, 14, 1-26. https://doi.org/10.1214/aos/1176349830
  8. Doksum, K. A. (1974). Tailfree and neutral random probabilities and their posterior distributions, Annals of Probability, 2, 183-201. https://doi.org/10.1214/aop/1176996703
  9. Doss, H. (1994). Bayesian nonparametric estimation for incomplete data via successive substitution sampling, Annals of Statistics, 22, 1763-1786. https://doi.org/10.1214/aos/1176325756
  10. Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems, Annals of Statistics, 1, 209-230. https://doi.org/10.1214/aos/1176342360
  11. Ferguson. T. S. and Phadia, E. G. (1979). Bayesian nonparametric estimation based on censored data, Annals of Statistics, 7, 163-186. https://doi.org/10.1214/aos/1176344562
  12. Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1999). Posterior consistency of Dirichlet mixtures in density estimation, Annals of Statistics, 27, 143-158. https://doi.org/10.1214/aos/1018031105
  13. Ghosal, S., Ghosh, J. K. and van der Vaart, A. D. (2000). Convergence rates of posterior distributions, Annals of Statistics, 28, 500-531. https://doi.org/10.1214/aos/1016218228
  14. Ghosh, J. K. and Ramamoorthi, R. V. (2003). Bayesian Nonparametircs, Springer.
  15. Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling, Applied Statistics, 41, 337-348. https://doi.org/10.2307/2347565
  16. Gill, R. D. and Johansen, S. (1990). A survey of product-integration with a view toward application in survival analysis, Annals of Statistics, 18, 1501-1555. https://doi.org/10.1214/aos/1176347865
  17. Hjort, N. L. (1985). Contribution to the discussion of Andersen and Borgan's 'Counting process models for life history data: a review', Scandinavian Journal of Statistics, 12, 141-150.
  18. Hjort, N. L. (1986). Contribution to the discussion of Diaconis and Freedman's 'On the consistency of Bayes estimates', Annals of Statistics, 14, 49-55. https://doi.org/10.1214/aos/1176349838
  19. Hjort, N. L. (1990). Nonparametric Bayes estimators based on Beta processes in models for life history data, Annals of Statistics, 18, 1259-1294. https://doi.org/10.1214/aos/1176347749
  20. Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes, Springer, New York.
  21. Kim, Y. (1999). Nonparametric Bayesian estimators for counting processes, Annals of Statistics, 27, 562-588. https://doi.org/10.1214/aos/1018031207
  22. Kim, Y. (2001). Mixture of Beta processes for right censored data, Journal of the Korean Statistical Society, 30, 127-138.
  23. Kim, Y. (2003). On posterior consistency of mixtures of Dirichlet processes with censored observations, Scandinavian Journal of Statistics, 30, 535-547. https://doi.org/10.1111/1467-9469.00347
  24. Kim, Y. and Hjort, N. (2012). Beta process envelopes around parametric models for survival analysis. Unpublished manuscript.
  25. Kim, Y., James, L. and Weisbach, R. (2012). Bayesian analysis for multi-state event history data: The Beta-Dirichlet process prior, Biometrika.
  26. Kim, Y. and Lee, J. (2001). On posterior consistency of survival models, Annals of Statistics, 29, 666-686. https://doi.org/10.1214/aos/1009210685
  27. Kim, Y. and Lee, J. (2003). Bayesian analysis of proportional hazard models, Annals of Statistics, 31, 493-511. https://doi.org/10.1214/aos/1051027878
  28. Kim, Y. and Lee, J. (2004). The Bernstein-von Mises theorem for survival models, Annals of Statistics, 32, 1492-1512. https://doi.org/10.1214/009053604000000526
  29. Kim, Y. (2006). The Bernstein-von Mises theorem of semiparametric Bayesian models for survival data, Annals of Statistics, 34, 1678-1700. https://doi.org/10.1214/009053606000000533
  30. Laud, P. W., Damien, P. and Smith, A. F. M. (1998). Bayesian nonparametric and covariate analysis of failure time data, In Practical Nonparametric and Semiparametric Bayesian Statistics, (eds: Dey, D., Muller, P. and Sinha, D.).
  31. Lee, J. and Kim, Y. (2004). A new algorithm to generate Beta processes, Computational Statistics and Data Analysis, 47, 441-453. https://doi.org/10.1016/j.csda.2003.12.008
  32. Lo, A. Y. (1993). A Bayesian bootstrap for censored data, Annals of Statistics, 21, 100-123. https://doi.org/10.1214/aos/1176349017
  33. Shen, X. and Wasserman, L. (2001). Rates of convergence of posterior distributions, Annals of Statistics, 29, 687-714. https://doi.org/10.1214/aos/1009210686
  34. Susarla, V. and Van Ryzin, J. (1976). Nonparametric Bayesian estimation of survival curves from incomplete observations, Journal of the American Statistical Association, 71, 897-902. https://doi.org/10.1080/01621459.1976.10480966
  35. Walker, S. G. (2003). On sufficient conditions for Bayesian consistency, Biometrika, 90, 482-488. https://doi.org/10.1093/biomet/90.2.482
  36. Walker, S. G. (2004). A new approach to Bayesian consistency, Annals of Statistics, 32, 2028-2043. https://doi.org/10.1214/009053604000000409
  37. Walker, S. and Hjort, N. L. (2001). On Bayesian consistency, Journal of the Royal Statistical Society, 63, 811-821. https://doi.org/10.1111/1467-9868.00314
  38. Walker, S. and Muliere, P. (1997). Beta-Stacy processes and a generalization of the Polya-urn scheme, Annals of Statistics, 25, 1762-1780. https://doi.org/10.1214/aos/1031594741
  39. Wolpert, R.L. and Ickstadt K. (1998). Simulation of Levy random fields, In Practical Nonparametric and Semiparametric Bayesian Statistics, (eds. Dey, D., Muller, P. and Sinha, D.), 227-242.