Abstract
Rhipe that integrates R and Hadoop environment, made it possible to process and analyze massive amounts of data using a distributed processing environment. In this paper, we implemented multiple regression analysis using Rhipe with various data sizes of actual data and simulated data. Experimental results for comparing the computing speeds of pseudo-distributed and fully-distributed modes for configuring Hadoop cluster, showed fully-distributed mode was more fast than pseudo-distributed mode and computing speeds of fully-distributed mode were faster as the number of data nodes increases. We also compared the performance of our Rhipe with stats and biglm packages available on bigmemory. The results showed that our Rhipe was more fast than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.
R과 Hadoop의 통합환경인 Rhipe 개발로 인해 분산처리 환경 하에서 대용량 데이터 분석이 가능해졌다. 본 논문에서는 Rhipe을 이용하여 실제 데이터와 모의실험 데이터에서 다양한 데이터 크기에 따라 다중 회귀분석을 구현하였다. Hadoop의 가상분산 모드(pseudo-dstributed mode)와 완전분산 모드(fully-distributed mode) 구축 시스템 비교에서 완전분산 모드 시스템이 가상분산 모드 시스템보다 처리 속도가 빠르고 데이터 노드의 수가 많을수록 계산 시간이 점점 줄어드는 것을 알 수 있었다. 또한, 제안된 Rhipe 플랫폼의 성능을 평가하기 위해 기본 R 패키지인 stats와 bigmemory 상에서 유용한 biglm 패키지와 처리 속도를 비교하였다. 실험결과 Rhipe은 데이터의 크기가 클수록 map task 개수가 증가되고 동시에 병렬 처리로 인해 다른 패키지들보다 빠른 처리속도를 보였다.