DOI QR코드

DOI QR Code

정준상관분석을 통한 다변량 금융시계열의 변동성 분석

Multivariate Volatility Analysis via Canonical Correlations for Financial Time Series

  • 이승연 (숙명여자대학교 통계학과) ;
  • 황선영 (숙명여자대학교 통계학과)
  • Lee, Seung Yeon (Department of Statistics, Sookmyung Women's University) ;
  • Hwang, S.Y. (Department of Statistics, Sookmyung Women's University)
  • 투고 : 2014.11.16
  • 심사 : 2014.11.23
  • 발행 : 2014.12.31

초록

다변량 금융시계열의 변동성분석을 다변량 기법인 정준상관분석(canonocal correaltion analysis)을 이용해 분석하였다. 변동성의 특성상 계수들이 비음(non-negative)인 정준상관분석, 즉, non-negative and sparse canonical correlation analysis (NSCCA)를 이용해 보았다. 본 논문은 다변량 시계열의 변동성 커브에 대해 연구하고 있으며 제시된 방법론을 이변량 주식자료분석을 통해 예시해 보았다.

Multivariate volatility is summarized through canonical correlation analysis (CCA). Along with the standard CCA, non-negative and sparse canonical correlation analysis (NSCCA) is introduced to make sure that volatility coefficients are non-negative and the number of coefficients in the volatility CCA is as small as possible. Various multivariate financial time series are analyzed to illustrate the main contribution of the paper.

키워드

참고문헌

  1. 성웅현 (1997). 응용 다변량분석-이론, 방법론, SAS활용, 탐진
  2. Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity, Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
  3. Choi, M. S., Park, J. A. and Hwang, S. Y. (2012). Asymmetric GARCH processes featuring both threshold effect and bilinear structure, Statistics & Probability Letters, 82, 419-426. https://doi.org/10.1016/j.spl.2011.11.023
  4. Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987-1008. https://doi.org/10.2307/1912773
  5. Engle, R. F. and Ng, V. K. (1993). Measuring and testing the impact of news on volatility, Journal of Finance, 48, 1749-1778. https://doi.org/10.1111/j.1540-6261.1993.tb05127.x
  6. Hwang, S. Y., Yoon, J. E. and Lee, J. W. (2013). A graphical improvement in volatility analysis for financial series, Korean Journal of Applied Statistics, 26, 785-796. https://doi.org/10.5351/KJAS.2013.26.5.785
  7. Buhmann, J., Fischer, B., Roth, V. and Sigg, C. (2007). Nonnegative CCA for audiovisual Source Separation, Machine Learning for Signal Processing, 253-258.
  8. Hwang, S. Y., Lee, J. W. and Yoon, J. E. (2014). News impact curve of volatility for asymmetric GARCH via LASSO, Korean Journal of Applied Statistics, 27, 159-168. https://doi.org/10.5351/KJAS.2014.27.1.159