DOI QR코드

DOI QR Code

Effect of Benzene, Acetone, and Methyl Mercaptan Vapor on Photocatalytic Decomposition of Toluene Vapor

톨루엔의 광촉매 분해시 벤젠, 아세톤 및 메틸메르캅탄 증기가 미치는 영향

  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Jeon, Jin-Woo (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • Received : 2014.08.07
  • Accepted : 2014.09.12
  • Published : 2014.12.31

Abstract

In this study, the photocatalytic decomposition characteristics of single toluene, toluene mixed with benzene, toluene mixed with acetone, and toluene mixed methyl mercaptan (MM) by UV reactor installed with $TiO_2$-coated perforated plate were studied. The photocatalytic decomposition rate of single toluene, toluene mixed with benzene, toluene mixed with acetone, and toluene mixed with MM fitted well on Langmuir-Hinshelwood (L-H) kinetics equation. The maximum elimination capacity was obtained to be $628g/m^3{\cdot}d$ for single toluene, $499g/m^3{\cdot}d$ for toluene mixed with benzene, $318g/m^3{\cdot}d$ for toluene mixed with acetone, and $513g/m^3{\cdot}d$ for toluene mixed with MM, respectively. The negative effect in photocatalytic decomposition of toluene are found to be in the order of acetone>benzene>MM.

Keywords

References

  1. Buzek, L., Warmuzinski, K., Tanczyk, M., Janusz-Cygan, J., 1999, Cost analysis for the removal of volatile organic compounds from air using hybrid systems: membrane separation/condensation versus membrane separation /combustion. Chem. Eng. Proc., 38, 273-279. https://doi.org/10.1016/S0255-2701(99)00010-0
  2. Everaert, K., Baeyens, J., 2004, Catalytic combustion of volatile organic compounds, J. Hazard. Mater., B109, 113-139.
  3. Jeon, J. W., Lee, D. H., Seo, J. S., Kam, S. K., Lee, M. G., 2013, Photocatalytic oxidation characteristics of benzene, toluene, and ethylbenzene by UV reactor inserted $TiO_{2}$-coated porous screw, Proceed. Korean Environ. Sci. Soc. Conf., 22, 750-753.
  4. Kam, S. K., Jeon, J. W., Lee, M. G., 2014, Effect of methyl ethyl ketone and ethyl acetate vapor on photocatalytic decomposition of n-pentane vapor, J. Environ. Sci. Intern., 23(6), 1151-1156. https://doi.org/10.5322/JESI.2014.23.6.1151
  5. Kim, S. Y., Kim, J. I., Kang, S. W., 2004, A study on the characteristics of odors by industrial classification, Rep. Busan Inst. Health Environ., 14, 21-40.
  6. Korologos, C. A., Philippopoulos, C. J., Poulopoulos, S. G., 2011, The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and mxylene in the gas-phase, Atmos. Environ., 45, 7089-7095. https://doi.org/10.1016/j.atmosenv.2011.09.038
  7. Ku, Y., Chen, J. S., Chen, H. W., 2007, Decomposition of benzene and toluene in air streams in fixed-film photoreactors coated with $TiO_{2}$ catalyst, J. Air Waste Manage. Assoc., 57, 279-285. https://doi.org/10.1080/10473289.2007.10465335
  8. Lee, M. G., Jun, P. J., Lee, D. H., Kam, S. K., 2003, Removal of toluene vapor in the biofilter packed with activated carbon/polyurethane composite media, J. Korean Ind. Eng. Chem., 14, 864-868.
  9. Lee, M. G., Lee, S. W., Kam, S. K., Lee, S. H., 2012, Variations of adsorption characteristics of binary vapor according to packing system of double-layer adsorption bed, J. Environ. Sci., 21, 305-312. https://doi.org/10.5322/JES.2012.21.3.305
  10. Li, X. Z., Hou, M. F., Li, F. B., Chua, H., 2006, Photocatalytic oxidation of beads in foul gas for odor control, Ind. Eng. Chem. Res., 45, 487-494. https://doi.org/10.1021/ie050343b
  11. Luo, Y. R., 2002, Handbook of bond dissociation energies in organic compounds, CRC press.
  12. Neti, N. R., Parmar, G. R., Bakardjieva, S., Subrt, J., 2010, Thick film titania on glass supports for vapour phase photocatalytic degradation of toluene, acetone, and ethanol, Chem. Eng. J., 163, 219-229. https://doi.org/10.1016/j.cej.2010.07.038
  13. Qijin, G., Qingming, W., Bin, Z., 2012, Adsorption and photocatalytic oxidation of methanol-benzene binary mixture in an annular fluidized bed photocatalytic reactor, Ind. Eng. Chem. Res., 51, 15360-15373. https://doi.org/10.1021/ie302207p
  14. Shang, J., Li, W., Zhu, Y., 2003, Structure and photocatalytic characteristics of TiO2 film photocatalyst coated on stainless steel webnet, J. Mol. Catal. A: Chem., 202, 187-195. https://doi.org/10.1016/S1381-1169(03)00200-0
  15. Urashima, K., Chang, J. S., 2000, Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology, IEEE Trans. Dielectr. Electr. Insul., 7, 602-614. https://doi.org/10.1109/94.879356
  16. Vildozo, D., Portela, R., Ferronato, C., Chovelong, J. M., 2011, Photocatalytic oxidation of 2-propanol/toluene binary mixtures at indoor air concentration levels, Appl. Catal. B: Environ., 107, 347-354. https://doi.org/10.1016/j.apcatb.2011.07.035
  17. Wen, Z., Wang, Z., Zhou, J., Cen, K., 2009, A theoretical study on the mechanism and kinetic of the reaction between ozone and benzene, Ozone Sci. Eng., 31, 393-401. https://doi.org/10.1080/01919510903157879
  18. Zhang, Y. P., Yang, R., Xu, Q. J., Mo, J. H., 2007, Characteristics of photocatalytic oxidation of toluene, benzene, and their mixture, J. Air Waste Manage. Assoc., 57, 94-101. https://doi.org/10.1080/10473289.2007.10465302
  19. Zhang, S., Zheng, Z., Wang, J., Chen, J., 2006, Heterogeneous photocatalytic decomposition of benzene on lanthanum -doped $TiO_{2}$ film at ambient temperature, Chemosphere, 65, 2282-2288. https://doi.org/10.1016/j.chemosphere.2006.05.027