DOI QR코드

DOI QR Code

Sparse Signal Recovery Using A Tree Search

트리검색 기법을 이용한 희소신호 복원기법

  • Lee, Jaeseok (Korea University School of Information and Communication) ;
  • Shim, Byonghyo (Seoul National University Department of Electrical Engineering)
  • Received : 2014.10.22
  • Accepted : 2014.11.27
  • Published : 2014.12.31

Abstract

In this paper, we introduce a new sparse signal recovery algorithm referred to as the matching pursuit with greedy tree search (GTMP). The tree search in our proposed method is implemented to minimize the cost function to improve the recovery performance of sparse signals. In addition, a pruning strategy is employed to each node of the tree for efficient implementation. In our performance guarantee analysis, we provide the condition that ensures the exact identification of the nonzero locations. Through empirical simulations, we show that GTMP is effective for sparse signal reconstruction and outperforms conventional sparse recovery algorithms.

본 논문에서는 트리검색 기반의 GTMP (matching pursuit with greedy tree search)이라는 새로운 희소신호 복원기법을 제안한다. 트리검색은 비용함수 (cost function)를 최소화함으로써 희소신호 복원 성능을 향상시키기 위해 적용하였다. 또한 각 노드마다 트리제거 (tree pruning)기법을 이용하여 효율적인 알고리듬을 개발하였다. 본 논문에서는 알고리듬의 성능분석을 통해 희소신호에서 영(0)이 아닌 값의 위치를 정확히 찾아내는 조건을 도출하였다. 그리고 실험을 통해 GTMP가 기존의 희소신호 복원기법에 비해 성능이 향상되었음을 보였다.

Keywords

References

  1. E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006. https://doi.org/10.1109/TIT.2005.862083
  2. E. J. Candes and T. Tao, "Decoding by linear programming," IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4203-4215, Dec. 2005. https://doi.org/10.1109/TIT.2005.858979
  3. E. Liu and V. N. Temlyakov, "The orthogonal super greedy algorithm and applications in compressed sensing," IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2040-2047, Apr. 2012. https://doi.org/10.1109/TIT.2011.2177632
  4. E. J. Candes, "The restricted isometry property and its implications for compressed sensing," Comptes Rendus Mathematique, vol. 346, no. 9-10, pp. 589-592, May 2008. https://doi.org/10.1016/j.crma.2008.03.014
  5. R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Royal Stat. Soc. Series B, vol. 58, no. 1, pp. 267-288, 1996.
  6. E. Candes and T. Tao, "The Dantzig selector: statistical estimation when p is much larger than n," The Annal. Stat., vol. 35, no. 6, pp. 2313-2351, Dec. 2007. https://doi.org/10.1214/009053606000001523
  7. T. Tony Cai and L. Wang, "Orthogonal matching pursuit for sparse signal recovery with noise," IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4680-4688, Jul. 2011. https://doi.org/10.1109/TIT.2011.2146090
  8. D. Needell and J. A. Tropp, "CoSaMP: iterative signal recovery from incomplete and inaccurate samples," Commun. ACM, vol. 53, no. 12, pp. 93-100, Dec. 2010.
  9. J. Wang, S. Kwon, and B. Shim, "Generalized orthogonal matching pursuit," IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6202-6216, Dec. 2012. https://doi.org/10.1109/TSP.2012.2218810
  10. S. S. Chen, D. L. Donoho, and Michael A. Saunders, "Atomic decomposition by basis pursuit," SIAM J. Scientific Computing, vol. 20, no. 1, pp. 33-61, 1998. https://doi.org/10.1137/S1064827596304010
  11. J. Park, I. Kim, H. Song, and S. Han, "Iterative detection and decoding of LDPCCoded multiuser uplink massive-MIMO systems," J. KICS, vol. 39A, no. 9, pp. 528-534, Sept. 2014. https://doi.org/10.7840/kics.2014.39A.9.528
  12. K. Lim, J. Lee, S. Kim, D. Pak, and S. Lee, "Intra prediction algorithm using adaptive modes," J. KICS, vol. 38A, no. 6, pp. 492-503, Jun. 2013. https://doi.org/10.7840/kics.2013.38A.6.492
  13. S. Park and S. Choi, "An MMSE based iterative soft decision interference cancellation scheme for massive MIMO systems," J. KICS, vol. 39A, no. 9, pp. 566-568, Sept. 2014. https://doi.org/10.7840/kics.2014.39A.9.566