DOI QR코드

DOI QR Code

Guaranteed Sparse Recovery Using Oblique Iterative Hard Thresholding Algorithm in Compressive Sensing

Oblique Iterative Hard Thresholding 알고리즘을 이용한 압축 센싱의 보장된 Sparse 복원

  • Nguyen, Thu L.N. (School of Electronic Engineering, Soongsil University) ;
  • Jung, Honggyu (School of Electronic Engineering, Soongsil University) ;
  • Shin, Yoan (School of Electronic Engineering, Soongsil University)
  • Received : 2014.10.14
  • Accepted : 2014.11.27
  • Published : 2014.12.31

Abstract

It has been shown in compressive sensing that every s-sparse $x{\in}R^N$ can be recovered from the measurement vector y=Ax or the noisy vector y=Ax+e via ${\ell}_1$-minimization as soon as the 3s-restricted isometry constant of the sensing matrix A is smaller than 1/2 or smaller than $1/\sqrt{3}$ by applying the Iterative Hard Thresholding (IHT) algorithm. However, recovery can be guaranteed by practical algorithms for some certain assumptions of acquisition schemes. One of the key assumption is that the sensing matrix must satisfy the Restricted Isometry Property (RIP), which is often violated in the setting of many practical applications. In this paper, we studied a generalization of RIP, called Restricted Biorthogonality Property (RBOP) for anisotropic cases, and the new recovery algorithms called oblique pursuits. Then, we provide an analysis on the success of sparse recovery in terms of restricted biorthogonality constant for the IHT algorithms.

압축 센싱에서 측정 행렬 A의 3s-Restricted Isometry Constant가 1/2 혹은 $1/\sqrt{3}$보다 작다면 모든 s-Sparse 벡터 $x{\in}R^N$는 측정 벡터 y=Ax 또는 잡음이 섞인 벡터 y=Ax+e로부터 Iterative Hard Thresholding (IHT) 알고리즘에 의해 복원될 수 있다. 하지만, 이러한 복원은 신호 획득 기법의 특정한 가정 하에서 실질적인 알고리즘들에 의해 보장된다. 복원을 위한 핵심적인 가정 중에 하나는 측정 행렬이 Restricted Isometry Property (RIP)를 만족해야만 하는 것인데, 이 조건은 압축 센싱의 실제 응용 환경에서 종종 만족되지 않는다. 본 논문에서는 이방성 (Anisotropic) 경우에서 Restricted Biorthogonality Property (RBOP)로 불리는 RIP의 일반화와 Oblique Pursuit으로 불리는 새로운 복구 알고리즘들을 분석한다. 또한, IHT 알고리즘들을 위해 Restricted Biorthogonality Constant의 관점에서 성공적인 Sparse 신호 복원에 대한 분석을 제시한다.

Keywords

References

  1. D. L. Donoho, "Compressed sensing," IEEE Trans. Info. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006. https://doi.org/10.1109/TIT.2006.871582
  2. K. Schnass and P. Vandergheynst, "Dictionary preconditioning for greedy algorithms," IEEE Trans. Signal Process., vol. 56, no. 5, pp. 1994-2002, May 2008. https://doi.org/10.1109/TSP.2007.911494
  3. S. Cotter, B. Rao, K. Engan, and K. Kreutz-Delgado, "Sparse solutions to linear inverse problems with multiple measurement vectors," IEEE Trans. Signal Process., vol. 53, no. 7, pp. 2477-2488, Jul. 2005. https://doi.org/10.1109/TSP.2005.849172
  4. J. Tropp, A. Gilbert, and M. Strauss, "Algorithms for simultaneous sparse approximation - Part I: Greedy pursuit," Signal Process., vol. 86, no. 3, pp. 572-588, Mar. 2006. https://doi.org/10.1016/j.sigpro.2005.05.030
  5. R. Gribonval, H. Rauhut, K. Schnass, and P. Vandergheynst, "Atoms of all channels, unite! Average case analysis of multi-channel sparse recovery using greedy algorithms," J. Fourier Anal. Appl., vol. 14, no. 5, pp. 655-687, 2008. https://doi.org/10.1007/s00041-008-9044-y
  6. Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, "Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition," in Proc. Asilomar Conf. Signals, Syst. Compt., vol. 1, pp. 40-44, Pacific Grove, CA, Nov. 1993.
  7. S. Chen, D. Donoho, and M. Saunders, "Atomic decomposition by basis pursuit," SIAM Rev., vol. 43, no. 1, pp. 129-159, 2001. https://doi.org/10.1137/S003614450037906X
  8. E. J. Candes, J. K. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Commun. Pure & Applied Math., vol. 59, no. 8, pp. 1207-1223, Mar. 2006. https://doi.org/10.1002/cpa.20124
  9. S. Foucart, "A note on guaranteed sparse recovery via $\ell_1$-minimization," Applied & Comput. Harmonic Anal., vol. 29, no. 1, pp. 97-103, Jul. 2010. https://doi.org/10.1016/j.acha.2009.10.004
  10. T. T. Cai, L. Wang, and G. Xu, "New bounds for restricted isometry constants," IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4388-4394, Sept. 2010. https://doi.org/10.1109/TIT.2010.2054730
  11. S. Foucart and M. J. Lai, "Sparsest solutions of underdetermined near systems via $\ell_q$-minimization for 0 < q < 1," Applied & Comput. Harmonic Anal., vol. 26, no. 3, pp. 395-407, May 2009. https://doi.org/10.1016/j.acha.2008.09.001
  12. K. Lee, Y. Bresler, and M. Junge, "Oblique pursuits for compressed sensing," IEEE Trans. Info. Theory, vol. 59, no. 9, pp. 6111-6141, Sept. 2013. https://doi.org/10.1109/TIT.2013.2254172
  13. S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing, Restricted Isometry Property, Ch. 6, NY: Springer, 2013.