DOI QR코드

DOI QR Code

Interference Avoidance Resource Allocation for Device-to-Device Communication Based on Graph-Coloring

단말 간 직접 통신을 위한 그래프-컬러링 기반 간섭 회피 자원 할당 방법

  • Lee, Changhee (Wired & Wireless Access Research Department, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Oh, Sung-Min (Wired & Wireless Access Research Department, ETRI) ;
  • Park, Ae-Soon (Wired & Wireless Access Research Department, ETRI)
  • Received : 2014.08.28
  • Accepted : 2014.11.24
  • Published : 2014.12.31

Abstract

In this paper, we propose interference avoidance resource allocation scheme based on graph-coloring algorithm to introduce performance gain using spatial reuse in D2D (Device-to-Device) system. By assigning multiple D2D pairs to a single D2D resource, interference from neighboring D2D pairs is inevitable, which leads to performance degradation. Therefore, we first introduce the feedback information and the method considering the amount of information that can be practically provided by a D2D pair. Then, we propose how to construct a graph, which is corresponding to the D2D system, using the feedback information and adopt a graph-coloring algorithm to efficiently avoid interference. Simulation results show that the proposed resource allocation scheme outperforms traditional resource allocation schemes in both overall sum rate and spectral efficiency of D2D system while reducing the outage probability. Moreover, the outage probability, which indicates a failure rate of D2D communication, can be reduced by adopting the proposed scheme.

본 논문은 단말 간 직접 통신 (D2D: Device-to-Device) 시스템 환경에서 공간 재사용을 통한 성능 향상을 위해 그래프-컬러링 알고리즘을 기반으로 한 간섭 회피 자원 할당 방법을 제안한다. 다수의 D2D 페어가 하나의 D2D 통신 자원을 공유하는 경우, 인접한 D2D 페어로 인해 불가피한 간섭이 발생하게 되므로 간섭을 효율적으로 제어할 수 있는 자원 할당 방법이 필요하다. 따라서 우리는 D2D 페어가 기지국에 제공할 수 있는 피드백 양의 한계를 고려한 실용적인 피드백 정보 및 방법과 피드백 받은 정보를 활용한 그래프 설계 방법을 제안하고, 효과적인 간섭을 회피를 위한 그래프-컬러링 알고리즘을 도입한다. 시뮬레이션 결과를 통해, 본 논문에서 제안한 자원 할당 방법이 기존의 자원 할당 방법에 비해 D2D 시스템의 총 용량과 스펙트럼 효율 측면에서 성능 이득을 가져오는 것을 확인할 수 있으며 D2D 페어의 통신 불가 확률을 감소시킴을 확인할 수 있다.

Keywords

References

  1. K. Doppler, M. P. Rnne, C. Wijting, C. B. Ribeiro, and K. Hugl, "Device-to-device communication as an underlay to LTEadvanced networks," IEEE Commun. Mag., vol. 47, no. 12, pp. 42-49, Dec. 2009.
  2. L. Lei, D. Z. Zhang, C. Lin, and X. M. Schen, "Operator controlled device-to-device communications in LTE-advanced networks," IEEE Wirel. Commun., vol. 9, no. 3, pp. 96-104, Dec. 2009.
  3. Y. Hwang, K. W. Sung, and S.-L. Kim, "Feasibility of massive device-to-device communications in cellular networks," J. KICS, vol. 37, no. 12, pp. 1091-1101, Dec. 2012. https://doi.org/10.7840/kics.2012.37B.12.1091
  4. 3rd Generation Partnership Project (3GPP) TR 36.843; Technical Specification Group RAN; Study on LTE Device to Device Proximity Services-Radio Aspects, Mar. 2014.
  5. X. Lin, J. G. Andrews, A. Ghosh, and R. Ratasuk, "An overview of 3GPP device-to-device proximity services," IEEE Commun. Mag., vol. 52, no. 4, pp. 40-48, Apr. 2014.
  6. D. Feng, L. Lu, Y. Yuan-Wu, G. Y. Li, G. Feng, and S. Li, "Device-to-device communications underlaying cellular networks," IEEE Trans. Commun., vol. 61, no. 8, pp. 3541-3551, Aug. 2013. https://doi.org/10.1109/TCOMM.2013.071013.120787
  7. T.-S. Kim, S.-J. Lee, C.-H. Lim, S. Ryu, and C.-H. Cho, "A novel frequency planning and power control scheme for device-to-device communication in OFDMA-TDD based cellular networks using soft frequency reuse," J. KICS, vol. 37, no. 10, pp. 885-894, Oct. 2012. https://doi.org/10.7840/kics.2012.37A.10.885
  8. H. Lee, H. H. Choi, S. Jung, S.-C. Chang, and D.-S. Kwon, "Performance evaluation of device-to-device communications based on system-level simulation in cellular networks," J. KICS, vol. 38B, no. 4, pp. 229-239, Apr. 2013. https://doi.org/10.7840/kics.2013.38B.4.229
  9. H. Min, J. Lee, S. Park, and D. Hong, "Capacity enhancement using an interference limited area for device-to-device uplink underlaying cellular networks," IEEE Trans. Wirel. Commun., vol. 10, no. 12, pp. 3995-4000, Dec. 2011. https://doi.org/10.1109/TWC.2011.100611.101684
  10. C.-H. Yu, K. Doppler, C. B. Ribeiro, and O. Tirkkonen, "Resource sharing optimization for device-to-device communication underlaying cellular networks," IEEE Trans. Wirel. Commun., vol. 10, no. 8, pp. 2752-2763, Aug. 2011. https://doi.org/10.1109/TWC.2011.060811.102120
  11. C. Xu, L. Song, Z. Han, Q. Zhao, X. Wang, X. Cjemg, and B. Jiao, "Efficiency resource allocation for device-to-device underlay communication systems: a reverse iterative combinatorial auction based approach," IEEE J. Sel. Areas in Commun., vol. 31, no. 9, pp. 348-358, Sept. 2013. https://doi.org/10.1109/JSAC.2013.SUP.0513031
  12. R. Y. Chang, Z. Tao, J. Zhang, and C. C. J. Kuo, "Multicell OFDMA downlink resource allocation using a graphic framework," IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3494-3507, Sept. 2009. https://doi.org/10.1109/TVT.2009.2014384
  13. D. Tsolkas, E. Liotou, N. Passas, and L. Merakos, "A graph-coloring secondary resource allocation for D2D communications in LTE networks," in Proc. IEEE CAMAD, pp. 56-60, Barcelona, Sept. 2014.
  14. X. Lin, J. G. Andrews, A. Ghosh, and R. Ratasuk, "Graph-based resource allocation for D2D communications underlaying cellular networks," in Proc. IEEE/CIC, pp. 187-192, Xi'an, China, Aug. 2013.
  15. R. Zhang, X. Cheng, L. Yang, and B. Jiao, "Interference-aware graph based resource sharing for device-to-device communications underlaying cellular networks," in Proc. IEEE WCNC, pp. 140-145, Shanghai, China, Apr. 2013.
  16. V. Mordachev and S. Loyka, "On node density-outage probability tradeoff in wireless networks," IEEE J. Sel. Areas in Commun., vol. 27, no. 7, pp. 1120-1131, Sept. 2009. https://doi.org/10.1109/JSAC.2009.090909
  17. D. B. West, Introduction to Graph Theory, 2nd Ed., Prentice Hall, 2001.