DOI QR코드

DOI QR Code

5 GHz/60 GHz 다중대역을 사용하는 WLAN을 위한 대역이동 결정 기법

Frequency Band Selection for WLAN Using Multiple Bands of 5 GHz/60 GHz

  • Jeong, Tae Hun (Hankuk University of Foreign Studies, Dept. of Electronics Engineering) ;
  • Jeong, Dong Geun (Hankuk University of Foreign Studies, Dept. of Electronics Engineering)
  • 투고 : 2014.08.27
  • 심사 : 2014.11.18
  • 발행 : 2014.12.31

초록

60 GHz 대역과 낮은 (2.4 GHz/5 GHz) 주파수 대역을 모두 사용하는 다중대역 WLAN은 송수신 단말이 충분히 가까우면 60 GHz 대역을 사용하여 Gbps 속도로 통신을 하고 단말 간의 거리가 멀면 낮은 주파수 대역에서 동작하여, 어떠한 경우에도 최적의 전송속도를 제공할 수 있다. 다중대역 WLAN의 효율적 운용을 위해서는 WLAN의 동작대역을 적절히 변경하는 대역이동 방안이 필요하다. 본 논문에서는 효과적인 대역이동 결정 기법을 설계한다. 또한 대역이동 프로토콜을 실제 구현할 때 필요한 제어프레임의 전송속도 선택 방법도 함께 제안한다. NS-3를 사용한 컴퓨터 시뮬레이션을 이용하여 인적 차폐(human blockage) 또는 로그노말 전파음영(log-normal shadowing)이 발생하는 환경에서 제안된 기법의 성능을 평가한다.

The multi-band wireless local area network (WLAN) using 60 GHz band and the lower band (typically 2.4 GHz/5 GHz band) can support the very high data rate in short-distance communication using 60 GHz band and the long-distance communication using the lower band. For heightening the efficiency of multi-band WLAN, an band selection scheme is a necessity. In this paper, we propose an effective frequency band selection scheme for multi-band WLANs. By using computer simulation with NS-3, we show the performance of the proposed schemes when the stations suffer from the human blockage and the log-normal shadowing.

키워드

참고문헌

  1. ECMA, High Rate 60 GHz PHY, MAC and PALs, Std. ECMA-387, Retrieved Aug., 2, 2014, from http://www.ecma-international.org/publications/standards/Ecma-387.htm.
  2. IEEE, Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Network (WPANs) - Amendment 2: Millimeter-wave based Alternative Physical Layer Extension, IEEE Std. 802.15.3c, Sept. 2009.
  3. IEEE, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications - Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band, IEEE Std. 802.11ad, Dec. 2012.
  4. K. Mandke and S. M. Nettles, "A dual-band architecture for multi-Gbps communication in 60 GHz multi-hop networks," in Proc. ACM mmCom 2010, pp. 9-14, Chicago, USA, Sept. 2010.
  5. W. Na and S. Cho, "Performance analysis of contention based directional MAC protocol," J. KICS, vol. 36, no. 7, pp. 827-833, Jul. 2011. https://doi.org/10.7840/KICS.2011.36B.7.827
  6. M. Kim and W. Lee, "Analysis of neighbor discovery process with directional antenna for IEEE 802.15.3c," J. KICS, vol. 37, no. 1, pp. 9-14, Jan. 2012. https://doi.org/10.7840/KICS.2012.37B.1.9
  7. H. Park, Y. Kim, T. Song, and S. Pack, "Multi-band directional neighbor discovery in self-organized mmWave ad-hoc networks," IEEE Trans. Veh. Tech., no. 99, Jun. 2014.
  8. J. Qiao, X. Shen, J. W. Mark, Z. Shi, and N. Mohammadizadeh, "MAC-layer integration of multiple radio bands in indoor millimeter wave networks," in Proc. IEEE WCNC 2013, Shanghai, China, Apr. 2013.
  9. Md. S. Hossain, H. S. Narman, and M. Atiquzzaman, "A novel scheduling and queue management scheme for multi-band mobile routers," in Proc. IEEE ICC 2013, Budapest, Hungary, Jun. 2013.
  10. K. Cho and D. H. Kim, "Cell management and handover method in IEEE 802.16e-based femto-cell systems," J. KICS, vol. 36, no. 3, pp. 240-249, Mar. 2011. https://doi.org/10.7840/KICS.2011.36A.3.240
  11. Network Simulator-3, Retrieved Aug., 1, 2014, from http://www.nsnam.org.
  12. A. Maltsev, et al., "Channel models for 60 GHz WLAN systems," IEEE 802.11ad Contrib. 09/0334r8, May 2010.
  13. A. Kamerman and L. Monteban, "WaveLAN- II: A high-performance wireless LAN for the unlicensed band," Bell Labs Tech. J., vol. 2, no. 3, pp. 115-133, 1997.
  14. T. H. Jeong and D. G. Jeong, "Frequency band selection scheme for WLAN using 5 GHz/60 GHz," in Proc. KICS JCCI 2014, Yeosu, Korea, Apr. 2014.