DOI QR코드

DOI QR Code

Packet Error Rate comparsion of Different Modulation Formats over Terrestrial Optical Wireless Communication in Turbulent Atmosphere

교란대기 지상 광무선 통신에서 변조방식에 따른 패킷 오류율 비교

  • Hong, Kwon-Eui (Kimpo College Department of Information and Telecommunication)
  • Received : 2014.10.01
  • Accepted : 2014.11.12
  • Published : 2014.12.31

Abstract

In the terrestrial optical wireless communication(OWC), the performance is affected by atmospheric turbulence and particles in the air. The received signal power loss mainly is caused by turbulence and scattering. To minimize the adverse atmospheric effects, the OWC used optical signal modulation, such as OOK, PPM and DPIM. In this paper, the packet error rate(PER) was analyzed above three modulation methods to ground optical link in atmospheric turbulence, scattering and link distance. The OWC system used three wavelengths which are 850nm, 1310nm and 1550nm. I assumed the atmospheric turbulence intensity is weak, so the refractive index is $Cn2{\approx}10-14m-2/3$ and the visibility is 2km. The numerical results shown that the L-DPIM scheme and the wavelength 1550nm are better than other modulation methods and wavelengths.

지상 광무선 통신에서 대기의 교란 및 대기 입자에 의한 광의 감쇄가 있을 때, 대기교란의 강도 및 가시도가 수신 광 강도에 미치는 영향을 해석하였다. 광신호는 On-Off Keying(OOK), Pulse Position Modulation(PPM) 및 Digital Pulse Interval Modulation(DPIM)의 방식으로 변조하였다. 교란대기 하에서 각 변조방식에 대해 광 전송 거리에 따른 광수신 전력을 계산하고 이를 이용하여 전송거리에 따른 패킷 오류율(packet error rate: PER)을 계산하였다. 광신호를 전송하기 위한 광원의 파장은 850nm, 1310nm 및 1550nm을 선택하였다. 대기는 약 교란 상태로 가정하여 대기 굴절률 구조상수 $Cn2{\approx}10-14m-2/3$, 대기의 가시도 V=2km로 하였다. 약교란 대기 상태에서 세가지 변조방식 중 DPIM 방식이 우수하며, 광 신호의 전송을 위한 파장으로는 1550nm가 PER 성능이 우수함을 알 수 있었다.

Keywords

References

  1. H. Henniger and O. Wilfert, "An introduction to free-space optical communications," Radioengineering, vol. 19, no. 2, pp. 203-212, Jun. 2010.
  2. R. Srinivasan and D. Sridharan, "The climate effects on line of sight (LOS) in FSO communication," 2010 IEEE Int. Conf. Computat. Intell. Comput. Res., http://www.itfrindia.org/ICCIC
  3. T.-H. Yeom, S.-M. Park, H.-I. Kwon, D.-K. Hwang, and J. Kim, "A smart farming system based on visible light communications," J. KICS, vol. 38C, no. 5, pp. 479-485, May 2013. https://doi.org/10.7840/kics.2013.38C.5.479
  4. Y. Cheng and S.-H. Hwang, "Subcarrier intensity modulation-spatial modulation for optical wireless communications," J. KICS, vol. 38A, no. 12, pp. 1086-1093, Dec. 2013. https://doi.org/10.7840/kics.2013.38A.12.1086
  5. H. Manor and S. Arnon, "Performance of an optical wireless communication system as a function of wavelength," Applied Optics, vol. 42, no. 21, pp. 4285-4294, 2003. https://doi.org/10.1364/AO.42.004285
  6. Z. Kolka, O. Wilfert, and V. Biolkova, "Reliability of digital FSO links in Europe," Int. J. Electrical, Robotics, Electron. Commun. Eng., vol. 1 no. 10, pp. 1494-1497, 2007.
  7. L. Dordova and O. Wilfert, "Calculation and comparison of turbulence attenuation by different methods," Radioengineering, vol. 19, no. 1, pp. 162-167, Apr. 2010.
  8. Z. Ghassemlooy and W. Popoola, Oyewole, "Terrestrial free-space optical communications," Terrestrial Free-Space Optical Commun., In: Mobile and Wirel. Commun. Netw. Layer and Circuit Level Design, Intech, ISBN 978-953-307-042-1 pp. 355-390, 2010.
  9. S. Arnon, S. R. Rotman, and N. S. Kopeika, "Performance limitations of free-space optical communication satellite networks due to vibrations: direct detection digital mode," Opt. Eng., vol. 36, no. 11, pp. 3148-3157, Nov. 1997. https://doi.org/10.1117/1.601553
  10. Z. Hajjarian, J. Fadlullah, and M. Kavehrad, "MIMO free space optical communications in turbid and turbulent atmosphere (invited paper)," J. Commun., vol. 4, no. 8, pp. 524-532, Sept. 2009.
  11. S. Arnon, "Optical wireless communications," Encyclopedia of Optical Eng., pp. 1866-1886, 2003.
  12. D. Kwon, S. Yang, H. Kim, Y. Son, and S. Han "Performance improvement for visible light communications using pre-equalizer and optical design," J. KICS, vol. 39, no. 6, Jun. 2013. https://doi.org/10.7840/kics.2014.39C.6.476
  13. M. I. Petkovic, G. T. Dordevic, and D. N. Milic, "BER Performance of IM/DD FSO system with OOK using APD Receiver," Radioengineering, vol. 23, no. 1, pp. 480-487, Apr. 2014.
  14. G. A. Mahdiraji and E. Zahedi, "Comparison of selected digital modulation schemes (OOK, PPM and DPIM) for wireless optical communications," Research and Development, pp. 5-10, 2006.
  15. Y. Jiang, K. Tao, Y. Song, and S. Fu, "Packet error rate analysis of OOK, DPIM, and PPM modulation schemes for ground-to-satellite laser uplink communications," Applied Optics, vol. 53, no. 7, pp. 1268-1273, 2014. https://doi.org/10.1364/AO.53.001268
  16. N. A. Mohammed, M. R. Abaza, and M. H. Aly, "Improved performance of M-ary PPM in different free-space optical channels due to reed solomon code using APD," Int. J. Sci. Eng. Res., vol. 2, no. 4, pp. 1-4, Apr. 2011.
  17. A. R. Hayes, Z. Ghassemlooy, and N. L. Seed, "Optical wireless communication using digital pulse interval modulation," in Proc. SPIE 3532, Optical Wirel. Commun., 61, Jan. 27, 1999.
  18. D. K. Borah, A. C. Boucouvalas, C. C. Davis, S. Hranilovic, and K. Yiannopoulos, "A review of communication-oriented optical wireless systems," EURASIP J. Wirel. Commun. Netw.," Mar. 2012, http://jwcn.eurasipjournals.com
  19. G. Yan and W Min, "Performance research of modulation for optical wireless communication," in Proc. 3rd Int. Symp. Comput. Sci. Computat. Technol.(ISCSCT '10), pp. 357-360, Aug. 2010.
  20. F. J. Mendieta, "Advanced trends in wireless communications," ch.16, 'Trends of the Optical Wirel. Commun.,' InTech, pp. 303-326, Feb. 2011.
  21. Z. Ghassemlooy, A. R. Hayes, N. L. Seed, and E. D. Kaluarachchi, "Digital pulse interval modulation for optical communications," IEEE Commun. Mag., vol. 36, no. 12, Dec. 1998.