DOI QR코드

DOI QR Code

Quality Assessment Model for Practical Wearable Computers

실용적 웨어러블 컴퓨터 품질평가모델

  • Received : 2014.07.09
  • Accepted : 2014.11.12
  • Published : 2014.12.31

Abstract

Recently, the progress of smart phone market has retarded by oversupply therefore wearable computer has been the focus of new growth engine. Wearable computing system is a complex fusion of a variety of technologies such as wireless network, embedded, sensor and new material. Because these technologies involves utilization and mobility in addition to quality characteristic in existing software, application of ISO/IEC 9126 is not perfect when assessing quality of wearable computer. In this study, author suggested new quality assessment model for wearable computer by sorting quality attribute in ISO/IEC 9126 and adding new quality attribute. For this, author investigated features and functional requirements related to wearable computer. and then author suggested quality standard and metrics by identifying quality characteristic. Author confirmed practicality of quality assessment model by using suggested model in scenario and comparing quality assessment of three goods such as company S, L, G. This quality assessment model is expected to use guidelines for assessing quality of wearable computer.

스마트폰 시장이 성숙기에 들어서면서 새로운 성장동력으로 웨어러블 컴퓨터가 주목받고 있다. 웨어러블 컴퓨팅 시스템은 무선 네트워크 기술, 임베디드 기술, 센서 기술, 신소재 기술 등 다양한 기술의 복합적인 융합체이다. 이러한 특징들은 기존의 소프트웨어가 가지고 있는 품질특성 이외에 활용성, 이동성 등의 특성을 내포하고 있기 때문에 국제표준인 ISO/IEC 9126의 표준만으로 정확한 품질 평가를 하기에는 어려움이 따른다. 본 논문에서는 이러한 필요성에 따라 기존의 ISO/IEC 9126과 웨어러블 컴퓨팅의 특징에 의해 도출된 품질특성을 추가해 웨어러블 컴퓨터 품질평가모델을 제안하였다. 웨어러블 컴퓨터 품질평가모델의 개발을 위해 웨어러블 컴퓨터의 기능적 요구사항과 품질특성을 도출하여 메트릭과 품질 기준을 제안하였다. 본 연구에서는 시나리오에 제안된 모델을 적용하고 S사, L사, G사의 웨어러블 기기의 품질을 비교하여 품질평가모델의 실용성을 확인하였다. 본 연구에서 제안한 평가모델은 웨어러블 컴퓨터의 품질평가를 위한 가이드라인으로 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. M. Steve, "Wearable computing: A first step toward personal imaging," Computer, vol. 30, no. 2, pp. 25-32, Feb. 1997.
  2. F. Jonny, A. J. Moore, N. Tilbury, J. Church, and P. D. Biemond, "Wearable sensor badge and sensor jacket for context awareness," IEEE 3rd Int. Symp. Wearable Computers, Digest of Papers, pp. 107-113, San Francisco, USA, Oct. 1999.
  3. G. Tia, D. Greenspan, M. Welsh, R. Juang, and A. Alm, "Vital signs monitoring and patient tracking over a wireless network," IEEE 27th Annu. Int. Conf. Eng. Medicine and Biology Soc.(IEEE-EMBS 2005), pp 102-105, Shanghai, China, Jan. 2006.
  4. J. Pouwelse, K. Langendoen, and H. Sips, "Dynamic voltage scaling on a low-power microprocessor," in Proc. MobiCom '01, pp. 251-259, New York, USA, Jul. 2001.
  5. M. Billinghurst and T. Starner, "Wearable devices: new ways to manage information," Computer, vol. 32, no. 1, pp 57-64, Jan. 1999.
  6. S. Park and S. Jayaraman, "Enhancing the quality of life through wearable technology," IEEE Eng. Medicine and Biology Mag., vol. 22, no. 3, pp. 41-48, May-Jun. 2003. https://doi.org/10.1109/MEMB.2003.1213625
  7. B. B. Chua and L. E. Dyson, "Applying the ISO 9126 model to the evaluation of an e-learning system," in Proc. ASCILITE, pp. 184-190, Perth, Australia, Dec. 2004.
  8. Su, Yu-Chi, et al., "A 52 mW full HD 160-degree object viewpoint recognition SoC with visual vocabulary processor for wearable vision applications," IEEE J. Solid-State Circuits, vol. 47, no. 4, pp. 797-809, Apr. 2012. https://doi.org/10.1109/JSSC.2012.2185349
  9. A. Pantelopoulos and N. G. Bourbakis, "A survey on wearable sensor-based systems for health monitoring and prognosis," IEEE Trans. Syst., Man, Cybernetics, Part C: Appl. Rev., vol. 40, no. 1, pp. 1-12, Jan. 2010. https://doi.org/10.1109/TSMCA.2009.2037571
  10. D. A. Ross and B. B. Blasch, "Wearable interfaces for orientation and wayfinding," in Proc. 4th Int. ACM Conf. Assistive Technol. ACM, pp. 193-200, New York, USA, Jul. 2000.
  11. H. M. Park, S. H. Lee, and J. S. Choi, "Wearable augmented reality system using gaze interaction," in Proc. 7th IEEE/ACM ISMAR 2008, pp. 175-176, Washington, USA, Sept. 2008.
  12. W. Y. Kim and U. N. Heo, "Super Resolution Processing Model in Cloud for Wearable Device," in Proc. KICS Int. Conf. Commun. 2014(KICS ICC Winter), pp. 124-125, Pyeong Chang, Korea, Jan. 2014.
  13. L. E. Dunne, P. Walsh, B. Smyth, and B. Caulfield, "Design and evaluation of a wearable optical sensor for monitoring seated spinal posture," IEEE Wearable Computers, pp. 65-68, Montreux, Swiss, Oct. 2006.
  14. D. P. Roberto and L. V. Mancini, "Security and privacy issues of handheld and wearable wireless devices," Commun. ACM, vol. 46, no. 9, pp. 74-79, Sept. 2003.
  15. J. H. Lee and D. S. Um, "An energy-efficient MAC protocol for wearable device WBAN environment through asymmetric method and QoS," J. KICS, vol. 37, no. 6, pp. 394-404, Jun. 2012.
  16. B. J. Rhodes, N. Minar, and J. Weaver, "Wearable computing meets ubiquitous computing: Reaping the best of both worlds," IEEE Wearable Computers, pp. 141-149, San Francisco, USA, Oct. 1999.
  17. M. Page and A. V. Moere, "Evaluating a wearable display jersey for augmenting team sports awareness," Pervasive Computing, LNCS 4480, pp. 91-108, Toronto, Canada, May 2007.
  18. Y. H. Oh, J. S. Lee, and S. J. Kang, "Protocol Design for Opportunistic Direct M2M Communication in Wearable Computing Environment," J. KICS, vol. 39, no. 2, pp. 151-163, Feb. 2014. https://doi.org/10.7840/kics.2014.39C.2.151
  19. S. H. Oh, S. D. Kim, and S. Y. Kim, "UCQM: A Quality Model for Practical Evaluation of Ubiquitous Computing Systems," J. KIISE, vol. 34, no. 4, pp. 342-358, Apr. 2007.