DOI QR코드

DOI QR Code

A Tx-Rx Beam Tracking Technique for Cellular Communication Systems with a mmWave Link

밀리미터 웨이브 링크를 갖는 셀룰러 통신 시스템을 위한 송·수신 빔 추적 기법

  • Kim, Kyu Seok (School of Electric & Electronic Engineering, Chung-Ang University) ;
  • Lim, Tae Sung (School of Electric & Electronic Engineering, Chung-Ang University) ;
  • Choi, Joo Hyung (School of Electric & Electronic Engineering, Chung-Ang University) ;
  • Cho, Yong Soo (School of Electric & Electronic Engineering, Chung-Ang University)
  • Received : 2014.08.05
  • Accepted : 2014.10.31
  • Published : 2014.12.31

Abstract

In cellular communication systems employing millimeter wave (mmWave) bands for a link, a large amount of training time and network resources will be required to find a serving BS with the best transmit and receive (Tx-Rx) beam pair if downlink control signals are used. In this paper, a tracking technique for OFDM-based cellular communication systems with a mmWave link, where an analog beamforer is used at the mobile station (MS) and a digital beamformer is used at the BS, is proposed using an uplink signal. A technique to select a serving BS with the best beam pair is described using the uplink preamble sequence based on Zadoff-Chu sequence and a metrics which can be used to identify parameters such as beam ID (BID), MS ID (MID), and direction-of-arrival (DoA). The effectiveness of the proposed technique is verified via simulation with the spatial channel model (SCM) for a moving MS in mmWave cellular systems.

밀리미터 웨이브 대역을 링크로 갖는 셀룰러 통신 시스템에서는 하향링크 제어신호를 사용하여 빔 추적을 할 경우에는 오랜 빔 트레이닝 시간과 많은 네트워크 자원이 소요된다. 본 논문에서는 아날로그 빔형성 방식의 단말기와 디지털 빔형성 방식의 기지국으로 구성된 밀리미터 웨이브 링크를 갖는 OFDM 기반 셀룰러 통신 시스템에 적합한 빔 추적 기법을 제안한다. 제안된 기법은 Zadoff-Chu 시퀀스 기반으로 설계된 상향 링크 프리앰블 신호와 단말기 ID, 단말기의 송신빔 ID, 수신 신호의 DoA 등의 파라메터를 추정할 수 있는 메트릭을 사용하여 기지국과 단말기 사이의 송수신 빔 쌍과 서빙 기지국을 추적할 수 있다. SCM 채널을 사용한 모의실험을 통하여 제안된 기법은 다수의 단말기가 존재하는 환경에서도 각 단말기의 송수신 빔 쌍을 효율적으로 추적하고, 빔 추적 시 요구되는 소요 시간과 계산 복잡도를 크게 줄일 수 있음을 확인한다.

Keywords

References

  1. F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, "Five disruptive technology directions for 5G," IEEE Commun. Mag., vol. 52, no. 2, pp. 74-80, Feb. 2014.
  2. T. S. Rappaport, et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, vol. 1, pp. 335-349, Mar. 2013. https://doi.org/10.1109/ACCESS.2013.2260813
  3. W. Roh, et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications theoretical feasibility and prototype results," IEEE Commun. Mag., vol. 52, no. 2, pp. 106-113, Feb. 2014.
  4. Z. Pi and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Commun. Mag., vol. 49, no. 6, pp. 101-107, Jun. 2011.
  5. F. Khan, Z. Pi, and S. Rajagopal, "Millimeterwave mobile broadband with large scale spatial processing for 5G mobile communication," 50th Annu. Allerton Conf. Commun. Contr. Comput., pp. 1517-1523, Monticello, IL, Oct. 2012.
  6. S. Rangan, T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: potentials and challenges," in Proc. IEEE, vol. 102, no. 3, pp. 366-385, Mar. 2014. https://doi.org/10.1109/JPROC.2014.2299397
  7. B. Li, Z. Zhou, W. Zou, X. Sun, and G. Du, "On the efficient beam-forming training for 60GHz wireless personal area networks," IEEE Trans. Wirel. Commun., vol. 12, no. 2, pp. 504-515, Feb. 2013. https://doi.org/10.1109/TWC.2012.121412.110419
  8. IEEE 802.11ad standard, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, Oct. 2012.
  9. H. H. Lee and Y. C. Ko, "Low complexity codebook-based beamforming for MIMOOFDM systems in millimeter-wave WPAN," IEEE Trans. Wirel. Commun., vol. 10, no. 11, pp. 3607-3612, Nov. 2011. https://doi.org/10.1109/TWC.2011.091911.102114
  10. S. Kato, et al., "Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems," IEEE J. Sel. Areas in Commun., vol. 27, no. 8, pp. 1390-1399, Oct. 2009. https://doi.org/10.1109/JSAC.2009.091009
  11. R. Pec, T. H. Hong, and Y. S. Cho, "Cell searching and DoA estimation for a mobile relay station in a multipath environment," IEEE J. Commun. Netw., vol. 15, no. 2, pp. 191-197, Apr. 2013. https://doi.org/10.1109/JCN.2013.000032
  12. J. C. Liberti and T. S. Pappaport, Smart Antennas for Wireless Communication: IS-95 and Third Generation CDMA Applications, Prentice Hall PTR, 1999.
  13. 3GPP TR 25.996 version 11.0.0 Release 11, Spatial channel model for Multiple Input Multiple Output (MIMO) simulations, Sept. 2012.