DOI QR코드

DOI QR Code

비즈니스 인텔리전스 시스템의 활용 방안에 관한 연구: 설명 기능을 중심으로

A study on the use of a Business Intelligence system : the role of explanations

  • Kwon, YoungOk (Division of Business Administration, Sookmyung Women's University)
  • 투고 : 2014.11.25
  • 심사 : 2014.12.13
  • 발행 : 2014.12.30

초록

다양한 빅데이터 기술이 발전함에 따라, 기업의 전략결정에 있어서 과거에는 의사결정자의 직관이나 경험에 의존하는 경향이 있었다면, 현재는 데이터를 활용한 과학적이고 분석적인 접근이 이루어지고 있다. 이에 많은 기업들이 경영정보시스템 중의 하나인 비즈니스 인텔리전스 (Business Intelligence) 시스템의 예측분석 기능을 활용하고 있다. 하지만, 이러한 시스템이 미래의 경영환경 변화를 예측하고 기업의 의사결정을 돕는 조언자 (Advisor)로서 역할을 한다고 가정할 때, 시스템에서 제공하는 분석결과가 의사결정자에게 도움을 주는 조언 (Advice) 의 역할을 하지 못하는 경우가 많은 실정이다. 따라서, 본 연구에서는 미래예측의 문제에 있어 의사결정자가 시스템의 조언을 따르는데 영향을 미치는 요소들과 영향력에 대해 분석하고, 그 결과를 바탕으로 데이터 기반의 의사결정을 보다 적극적으로 지원하는 시스템 환경을 제시하고자 한다. 좀 더 구체적으로는 예측 과정에 대한 자세한 설명이나 근거 제시가 시스템의 예측결과에 대한 의사결정자의 수용정도에 미치는 영향을 연구하였다. 이를 위하여 193명의 실험자를 대상으로 영화의 개봉 주 매출액을 예측하는 업무를 수행하고, 예측에 대한 설명의 길이와 조언자의 유형(사람과 시스템의 조언 비교)뿐 아니라 의사결정자의 개인 특성이 의사결정자의 조언 수용정도에 미치는 영향을 분석하였다. 시스템에서 제공하는 조언 내용인 예측결과와 설명에 대해 의사결정가가 느끼는 유용성, 신뢰성, 만족도가 조언의 수용에 미치는 영향도 분석하였다. 본 연구는 시스템의 분석결과를 조언으로 보고 조언자와 조언에 관한 의사결정학 분야의 선행연구를 접목시켜 경영정보시스템 연구 분야를 확장하였다는 점에서 연구의 의의가 있고, 실무적으로도 데이터 기반의 의사결정을 보다 적극적으로 지원할 수 있는 시스템 환경을 만들기 위해서 고려해야 할 점들을 제시함으로써 시스템 활용을 위한 정책결정에도 도움을 줄 수 있을 것으로 본다.

With the rapid advances in technologies, organizations are more likely to depend on information systems in their decision-making processes. Business Intelligence (BI) systems, in particular, have become a mainstay in dealing with complex problems in an organization, partly because a variety of advanced computational methods from statistics, machine learning, and artificial intelligence can be applied to solve business problems such as demand forecasting. In addition to the ability to analyze past and present trends, these predictive analytics capabilities provide huge value to an organization's ability to respond to change in markets, business risks, and customer trends. While the performance effects of BI system use in organization settings have been studied, it has been little discussed on the use of predictive analytics technologies embedded in BI systems for forecasting tasks. Thus, this study aims to find important factors that can help to take advantage of the benefits of advanced technologies of a BI system. More generally, a BI system can be viewed as an advisor, defined as the one that formulates judgments or recommends alternatives and communicates these to the person in the role of the judge, and the information generated by the BI system as advice that a decision maker (judge) can follow. Thus, we refer to the findings from the advice-giving and advice-taking literature, focusing on the role of explanations of the system in users' advice taking. It has been shown that advice discounting could occur when an advisor's reasoning or evidence justifying the advisor's decision is not available. However, the majority of current BI systems merely provide a number, which may influence decision makers in accepting the advice and inferring the quality of advice. We in this study explore the following key factors that can influence users' advice taking within the setting of a BI system: explanations on how the box-office grosses are predicted, types of advisor, i.e., system (data mining technique) or human-based business advice mechanisms such as prediction markets (aggregated human advice) and human advisors (individual human expert advice), users' evaluations of the provided advice, and individual differences in decision-makers. Each subject performs the following four tasks, by going through a series of display screens on the computer. First, given the information of the given movie such as director and genre, the subjects are asked to predict the opening weekend box office of the movie. Second, in light of the information generated by an advisor, the subjects are asked to adjust their original predictions, if they desire to do so. Third, they are asked to evaluate the value of the given information (e.g., perceived usefulness, trust, satisfaction). Lastly, a short survey is conducted to identify individual differences that may affect advice-taking. The results from the experiment show that subjects are more likely to follow system-generated advice than human advice when the advice is provided with an explanation. When the subjects as system users think the information provided by the system is useful, they are also more likely to take the advice. In addition, individual differences affect advice-taking. The subjects with more expertise on advisors or that tend to agree with others adjust their predictions, following the advice. On the other hand, the subjects with more knowledge on movies are less affected by the advice and their final decisions are close to their original predictions. The advances in predictive analytics of a BI system demonstrate a great potential to support increasingly complex business decisions. This study shows how the designs of a BI system can play a role in influencing users' acceptance of the system-generated advice, and the findings provide valuable insights on how to leverage the advanced predictive analytics of the BI system in an organization's forecasting practices.

키워드

참고문헌

  1. Anderson, U. and W. F., "Wright, Expertise and the explanation effect," Organizational Behavior and Human Decision Processes, Vol.42, No.2(1988), 250-269. https://doi.org/10.1016/0749-5978(88)90015-5
  2. Bonaccio, S. and R. S. Dalal, "Advice taking and decision making: An integrative literature review, and implications for organizational sciences," Organizational Behavior and Human Decision Processes, Vol.101, No.2(2006), 127-151. https://doi.org/10.1016/j.obhdp.2006.07.001
  3. Brynjolfsson, E., L. M. Hitt, and H. H. Kim, Strength in numbers: how does data-driven decision-making affect firm performance? Working paper, Social Science Research Network, 2011. Available at http://ssrn.com/abstract=1819486 (Downloaded 1 November, 2014).
  4. Dalal, R. S. and S. Bonaccio, "What types of advice do decision-makers prefer?," Organizational Behavior and Human Decision Processes, Vol.112, No.1(2010), 11-23. https://doi.org/10.1016/j.obhdp.2009.11.007
  5. Digman, J. M., "Personality structure: Emergence of the five-factor model," Annual Review of Psychology, Vol.41, No.1(1990), 417-440. https://doi.org/10.1146/annurev.ps.41.020190.002221
  6. Eddy, N., Big Data Still a Big Challenge for Government IT, eWeek, 2012. Available at http://www.eweek.com/c/a/Government-IT/Big-Data-Still-a-Big-Challenge-for-Government-IT-651653/ (Downloaded 1 November, 2014).
  7. Elbashir, M. Z., P. A. Collier, and M. J. Davern, "Measuring the effects of business intelligence systems: the relationship between business process and organizational performance," International Journal of Accounting Information Systems, Vol.9, No.3(2008), 135-153. https://doi.org/10.1016/j.accinf.2008.03.001
  8. Herlocker, J. L., J. A. Konstan, and J. Riedl, "Explaining Collaborative Filtering Recommendations," Proceedings of the 2000 ACM conference on Computer supported cooperative work, (2000), 241-250.
  9. Hwang Y., "A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network," Journal of Intelligence and Information Systems, Vol.18, No.4(2012), 43-57.
  10. Kim, K. H., 99% of the business is a prediction, Readersbook, 2012.
  11. Leone, C. and C. H. Dalton, "Some effects of the need for cognition on course grades," Perceptual and Motor Skills, Vol.67(1988), 175-178. https://doi.org/10.2466/pms.1988.67.1.175
  12. Onkal, D., P. Goodwin, M. Thomson, S. Gonul, and A. Pollock, "The relative influence of advice from human experts and statistical methods on forecast adjustments," Journal of Behavioral Decision Making, Vol.22, No.4(2009), 390-409. https://doi.org/10.1002/bdm.637
  13. Russom, P., Big data analytics, TDWI research, 2011. Available at http://tdwi.org/research/2011/09/-/media/TDWI/TDWI/Research/BPR/2011/TDWI_BPReport_Q411_Big_Data_Analytics_Web/TDWI_BPReport_Q411_Big%20Data_ExecSummary.ashx (Downloaded 11 November, 2014).
  14. Sadowski, C. J. and S. Gulgoz, "Elaborative processing mediates the relationship between the need for cognition and academic performance," The Journal of Psychology: Interdisciplinary and Applied, Vol.130, No.3(1996), 303-307. https://doi.org/10.1080/00223980.1996.9915011
  15. Samson T., IBM's Watson becomes a cancer treatment adviser, InfoWorld.com, 2013. Available at www.infoworld.com/t/big-data/ibms-watson-becomes-cancer-treatment-advisor-212644 (Downloaded 10 November, 2014).
  16. Scott, S. G. and R. A. Bruce, "Decision-making style: The development and assessment of a new measure," Educational and psychological measurement, Vol.55, No.5(1995), 818-831. https://doi.org/10.1177/0013164495055005017
  17. Tan, P-N, M. Steinbach, and V. Kumar, Introduction to Data Mining, Addison-Wesley, Boston, 2006.
  18. Wang, W. and I. Benbasat, "Trust in and Adoption of Online Recommendation Agents," Journal of the Association for Information Systems, Vol.6, No.3(2005), 72-101. https://doi.org/10.17705/1jais.00065
  19. Yaniv, I., "Receiving other people's advice: Influence and benefit," Organizational Behavior and Human Decision Processes, Vol.93, No.1(2004), 1-13. https://doi.org/10.1016/j.obhdp.2003.08.002
  20. Yaniv, I. and E. Kleinberger, "Advice taking in decision making: Egocentric discounting and reputation formation," Organizational Behavior and Human Decision Processes, Vol.83, No.2(2000), 260-281. https://doi.org/10.1006/obhd.2000.2909
  21. Yates, J. F., P. C. Price, J.-W. Lee, and J. Ramirez, "Good probabilistic forecasters: the consumer's perspective," International Journal of Forecasting, Vol.12, No.1(1996), 41-56. https://doi.org/10.1016/0169-2070(95)00636-2

피인용 문헌

  1. 공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구 vol.25, pp.4, 2014, https://doi.org/10.13088/jiis.2019.25.4.001
  2. 정보보호 대책의 성능을 고려한 투자 포트폴리오의 게임 이론적 최적화 vol.26, pp.3, 2020, https://doi.org/10.13088/jiis.2020.26.3.037