DOI QR코드

DOI QR Code

A Study on the Model for Effective Hydraulic Fracturing by Using Guide Hole

유도홈을 이용한 효과적인 수압파쇄 모델연구

  • Mun, Hong Ju (Dept. of Energy & Resources Engineering, Korea Maritime Ocean University) ;
  • Shin, Sung Ryul (Dept. of Energy & Resources Engineering, Korea Maritime Ocean University) ;
  • Lim, Jong Se (Dept. of Energy & Resources Engineering, Korea Maritime Ocean University) ;
  • Jeong, Woo Keen (Dept. of Energy & Resources Engineering, Korea Maritime Ocean University) ;
  • Jang, Won Yil (Dept. of Energy & Resources Engineering, Korea Maritime Ocean University)
  • Received : 2014.11.24
  • Accepted : 2014.12.10
  • Published : 2014.12.31

Abstract

Hydraulic fracturing technique has been applied in various fields in order to improve the recovery of energy resources such as gas, oil and geothermal energy and research about finding out hydraulic fracturing mechanism and application has been steadily proceeded. In this study, for effective hydraulic fracturing, a scale modeling was progressed to simulate similarly with the actual site. In order to analyze the development aspect of surface crack initiation pressure during hydraulic fracturing followed by different conditions, the number of guide holes hydraulic fracturing test was carried out by setting up a hydraulic fracturing test equipment. Also, through the result, we tried to derive reliable results by comparing and analyzing the value of numerical modeling which is obtained based on the physical properties and mechanical properties with 3DEC, a three-dimensional discrete element method program. As a result, it is considered possible to generate effective crack using the guide hole.

수압파쇄 기술은 가스나 석유, 지열 등 에너지자원의 회수율을 향상시키기 위해 다양한 분야에서 응용되고 있으며 수압파쇄 메커니즘 규명 및 응용분야에 대한 연구는 꾸준히 진행되어 왔다. 본 연구에서는 효과적인 수압파쇄를 위하여 실제 현장과 유사한 상황을 구현할 수 있는 축소모형실험을 통해 유도홈의 개수에 따른 수압파쇄시 균열발생 압력을 분석하기 위하여 수압파쇄 시험 장치를 구축하여 수압파쇄 시험을 실시하였다. 또한 그 결과를 토대로 물성과 역학적인 특성을 취득하여 3차원 개별 요소 프로그램인 3DEC을 이용한 수치해석적 모델링 값과 비교 분석함으로써 신뢰성 있는 결과를 도출하고자 하였다. 그 결과 유도홈을 이용할 경우 효과적인 균열 발생이 가능할 것으로 사료된다.

Keywords

References

  1. Al-Busaidi, A., Hazzard, J.F. and Young, R.P., 2005, Distinct element modeling of hydraulically fractured Lac du Bonnet granite, Journal Geophysical Reserch 110, B06302, DOI:10.1029/2004JB003297.
  2. Cheon, D.S. and Lee, T.J., 2013, Theoretical Background and Design of Hydraulic Fracturing in Oil and Gas Production, Journal of Korean Society for Rock Mechanics, Vol. 23, No. 6, 538-546. https://doi.org/10.7474/TUS.2013.23.6.538
  3. Choi, S.O., 2000, A Numerical Study of Hydraulic Fractures Propagation with Rock Bridges, Journal of Korean Society for Rock Mechanics, Vol. 10, 447-456.
  4. Choi, S.O., 2011, Numerical Approach for Determination of shut-in Pressure in Hydrofracturing Test, Journal of Korean Society for Rock Mechanics, Vol. 21, No. 2, 128-137.
  5. Choi, S.O. and Lee, H.K., 1995, The Analysis of Fracture Propagation in Hydraulic Fracturing using Artificial Slot Model, Journal of Korean Society for Rock Mechanics, Vol. 5, 251-265.
  6. Haimson, B.C. and Fairhurst, C., 1967, Initiation and extension of hydraulic fracture in rocks, SPE, 7, 301-318. https://doi.org/10.2118/1516-PA
  7. Hazzard, J.F., Young, R.P. and Maxwell, S.C., 2000, Micromechanical modeling of cracking and failure in brittle rocks, J. Geophys. REs., 105(B7), 16683-97. https://doi.org/10.1029/2000JB900085
  8. Hubbert, M. K. and Willis, D.G., 1957, Mechanics of hydraulic fracturing, Trans. AIME., 201, 153-163.
  9. Ishida, T., 2001, Acoustic emission monitoring if hydraulic fracturing in laboratory and field, Construction and Building Materials, 15, 283-295. https://doi.org/10.1016/S0950-0618(00)00077-5
  10. Kim, G.T., Chung, K.Y. and Park, J.K., 2014, Recent Water Treatment Technology for Unconventional Natural Recource Development, Korean Chem. Eng. REs., 52(2), 154-165. https://doi.org/10.9713/kcer.2014.52.2.154
  11. Lee, H.K., 1995, A Study on the Development of the Geothermal Energy through the Hydraulic Fracturing Method, KOSEF.
  12. Lockner, D., Byerlee, J.D., 1977, Hydrofracture in Weber sandstone at high confining pressure and differential stress, J. Geophys. Res., 82(14), 2018-2026. https://doi.org/10.1029/JB082i014p02018
  13. Shimizu, H., Murata, S., Ishida, T., 2011, The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution, Int. J. Rock Mech. Min. Sci., 48, 712-727. https://doi.org/10.1016/j.ijrmms.2011.04.013
  14. Zoback, M.D., Rummel, F., Jung, R. and Raleigh, C.B., 1977, Laboratory hydraulic fracturing experiments in intact and pre-fractured rock, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 14, 49-58.

Cited by

  1. The Effects of High Pressure Water Contact State on Hydraulic Fracturing vol.26, pp.5, 2016, https://doi.org/10.7474/TUS.2016.26.5.409
  2. Numerical Simulation of Hydraulic Fracture Propagation Guided by Single Radial Boreholes vol.10, pp.10, 2017, https://doi.org/10.3390/en10101680