References
- Dempster A P., Laird N M., Rubin D B., Maximum likelihood from incomplete data via the EM algirithm, Journal of the Royal Statistical Society, Vol. 39, No. 1, pp. 1-38, 1977
- Gibson D., Kleindeberg J., Raghvan P., Clustering categorical data: An approach based on dynamical systems, The Very Large Data Bases Journal, vol. 8, no. 3-4, pp. 222-236, 2000 https://doi.org/10.1007/s007780050005
- Jiang D., Tang C., Zhang A., Cluster analysis for gene expression data: A survey, IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 11, pp. 1370-1386, 2004 https://doi.org/10.1109/TKDE.2004.68
- Herawan T., Ghazali R., Yanto I., Deris M., Rough set approach for cateforical data clustering, International Journal of Database Theory and Application, vol. 3, no. 1, pp. 33-52, 2010
- Huang Z, Extensions to the k-means algorithm for clustering large data sets with cateforical values. Data Mining and Knowledge Discovery, vol. 2, no. 3, pp. 283-304, 1998 https://doi.org/10.1023/A:1009769707641
- Kim D., Lee K., Lee D., Fussy clustering of categorical data using fuzzy centroids, Pattern Recognition Letters, vol. 25, no. 11, pp. 1263-1271, 2004 https://doi.org/10.1016/j.patrec.2004.04.004
- Parmar D., Wu T., Blackhurst J., MMR: An algorithm for clustering categorical data using rough set throry, Data and Knowledge Engineering, vol. 63, pp. 879-893, 2007 https://doi.org/10.1016/j.datak.2007.05.005
- Sun, L., Xu, J., Xue, Z. and Zhang, L., Rough entropy-based feature selection and its application, Journal of Information and Computational Science, pp. 1525-1532, 2011
- Anjana K., Study on Naive Bayesian classifier and its relaton to information gain, International Journal on Recent and Innovation Trends in Computing and Communication, vol. 2, pp. 601-603, 2014
- Pawlak, Z. Rough set Theory and Its Applications to Data Analysis, Cyberdynamics and Systems: An International Journal, pp. 661-688, 1998
- Tripathy B. K., Ghosh A., A SDR: An algorithm for clustering categorical data using rough set theory, Private communication at the International IEEE Conference held in Kerala, 2011
- Tripathy B. K., Ghosh A., A SSDR: An algorithm for clustering categorical data using rough set theory, Advances in Applied Science Research, vol. 2, no. 3, pp. 320-324, 2011
- Hassanein W. A., Elmelegy A. A., Clustering algorithm for categorical data using concepts of significance and dependence of attributes, European Scientific Jouranl, vol. 10, no. 3, pp. 381-400, 2014
- Fuyuan C., Jiye L., Deyu L., Chuangyin D., A dissimility measure for the k-Modes clustering algorithm, Knowledge-Based Systems Journal, vol. 26, pp. 120-127, 2012 https://doi.org/10.1016/j.knosys.2011.07.011
- Tian B. Kulikowski C.A., Leiguang G., Bin Y., Lan H., Chunguang Z., Chinese Journal of Electronics, vol. 21, no. 3, pp. 460-465, 2012
- Mete Ciilngirturk A., Ergut O., Hierarchical clustering with simple matching and joint entropy dissimility measure, Journal of Modern Applied Statiscal Methods, vol. 13, no. 1, pp. 329-338, 2013
Cited by
- Multiscale Integration Approach for Land Cover Classification Based on Minimal Entropy of Posterior Probability vol.10, pp.3, 2017, https://doi.org/10.1109/JSTARS.2016.2615073