DOI QR코드

DOI QR Code

A brief review on recent developments of superconducting microwave resonators for quantum device application

  • Chong, Yonuk (Korea Research Institute of Standards and Science)
  • Received : 2014.10.13
  • Accepted : 2014.10.17
  • Published : 2014.12.31

Abstract

Quantum information processing using superconducting qubit based on Josephson junction has become one of the most promising candidates for possible realization of a quantum computer. In the heart of the qubit circuits, the superconducting microwave resonator plays a key role in quantum operations and measurements, which enables single-photon level microwave quantum optics. During last decade, the coherence time, or the lifetime of the quantum state, of the superconducting qubit has been dramatically improved. Among several technological innovations, the improvement of superconducting microwave resonator's quality has been the main driving force in getting the qubit performance almost ready for elementary quantum computing architecture. In this paper, I will briefly review very recent progresses of the superconducting microwave resonators especially aimed for quantum device applications during the last decade. The progresses have been driven by ingenious circuit design, material improvement, and new measurement techniques. Even a rather radical idea of three-dimensional large resonators have been successfully implemented in a qubit circuit. All those efforts contributed to our understanding of the qubit decoherence mechanism and as a result to the improvement of qubit performance.

Keywords

References

  1. P. K. Day, H. G. Leduc, B. A. Mazin, A. Vayonakis, J. Zmuidzinas, "A broadband superconducting detector suitable for use in large array", Nature, vol. 425, pp. 817-821, 2003. https://doi.org/10.1038/nature02037
  2. C. A. Regal, J. D. Teufel, K. W. Lehnert, "Measuring nanomechanical motion with a microwave cavity interferemeter", Nat. Phys., vol. 4, pp. 555-560, 2008. https://doi.org/10.1038/nphys974
  3. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. -S. Hwang, J. Majer, S. Kumar, S. M. Girvin, R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics", Nature, vol. 431, pp. 162-167, 2004. https://doi.org/10.1038/nature02851
  4. R. W. Simmonds, K. M. Lang, D. A. Hite, S. Nam, D. P. Pappas, J. M. Martinis, "Decoherence in Josephson phase qubit from junction resonators", Phys Rev. Lett., vol. 93, pp. 077003, 2004. https://doi.org/10.1103/PhysRevLett.93.077003
  5. I. Martin, L Bulaevskii, A. Shnirman, "Tunneling spectroscopy of two-level systems inside a Josephson junction", Phys Rev. Lett., vol. 95, pp. 127002, 2005. https://doi.org/10.1103/PhysRevLett.95.127002
  6. J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, C. C. Yu, "Decoherence in Josephson qubits from dielectric loss", Phys Rev. Lett., vol. 95, pp. 210503, 2005. https://doi.org/10.1103/PhysRevLett.95.210503
  7. M. H. Devoret, R. J. Schoelkopf, "Superconducting circuits for quantum information: an outlook", Science, vol. 339, pp. 1169-1174, 2013. https://doi.org/10.1126/science.1231930
  8. J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf, "Charge-insensitive qubit design derived from the Cooper pair box", Phys Rev. A, vol. 76, pp. 042319, 2007. https://doi.org/10.1103/PhysRevA.76.042319
  9. H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glasman, S. M. Girvin, M. H. Devoret, R. J. Schoelkopf, "Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture", Phys Rev. Lett., vol. 107, pp. 240501, 2011. https://doi.org/10.1103/PhysRevLett.107.240501
  10. J. Wenner, R. Barends, R. C. Bialczak, Y. Chen, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, P. J. J. O'Malley, D. Sank, A. Vainsencher, H. Wang, T. C. White, Y. Yin, J. Zhao, A. N. Cleland, J. M. Martinis, "Surface loss simulations of superconducting coplanar waveguide resonators", Appl. Phys. Lett., vol. 99, pp. 113513, 2011. https://doi.org/10.1063/1.3637047
  11. K. Cicak, D. Li, J. A. Strong, M. S. Allman, F. Altomare, A. J. Sirois, J. D. Whittaker, J. D. Teufel, R. W. Simmonds, "Low-loss superconducting resonant circuits using vacuum-gap-based microwave components", Appl. Phys. Lett., vol. 96, pp. 093502, 2010. https://doi.org/10.1063/1.3304168
  12. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, R. W. Simmons, "Circuit cavity electromechanics in the strong-coupling regime", Nature, vol. 471, pp. 204-208, 2011. https://doi.org/10.1038/nature09898
  13. H. Paik, K. D. Osborn, "Reducing quantum-regime dielectric loss of silicon nitride for superconducting quantum circuits", Appl. Phys. Lett., vol. 96, pp. 072505, 2010. https://doi.org/10.1063/1.3309703
  14. R. Barends, N. Vercruyssen, A. Endo, P. J. de Visser, T. Zijlstra, T. M. Klapwijk, P. Diener, S. J. C. Yates, J. J. A. Baselmans, "Minimal resonator loss for circuit quantum electrodynamics", Appl. Phys. Lett., vol. 97, pp. 023508, 2010. https://doi.org/10.1063/1.3458705
  15. A, Megrant, C. N. Barends, B. Chiaro, Yu Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O'Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrom, J. M. Martinis, A. N. Cleland, "Planar superconducting resonators with internal quality factors above one million", Appl. Phys. Lett., vol. 100, pp. 113510, 2012. https://doi.org/10.1063/1.3693409
  16. R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Clelane, J. M. Martinis, "Superconducting quantum circuits at the surface code threshold for fault tolerance", Nature, vol. 508, pp. 500-503, 2014. https://doi.org/10.1038/nature13171
  17. H. G. Leduc, B. Bumble, P. K. Day, B. H. Eom, J. Gao, S. Golwala, B. A. Mazin, S. McHugh, A. Merrill, D. C. Moore, O. Noroozian, A. D. Turner, J. Zmuidzinas, "Titanium nitride films for ultrasensitive microresonator detectors", Appl. Phys. Lett., vol. 97, pp. 102509, 2010. https://doi.org/10.1063/1.3480420
  18. M. R. Vissers, J. Gao, D. S. Wisbey, D. A. Hite, C. C. Tsuei, A. D. Corcoles, M. Steffen, D. P. Pappas, "Low loss superconducting titanium nitride coplanar waveguide resonators", Appl. Phys. Lett., vol. 97, pp. 232509, 2010. https://doi.org/10.1063/1.3517252
  19. J. B. Chang, M. R. Vissers, A. D. Corcoles, M. Sandberg, J. Gao, D. W. Abraham, J. M. Chow, J. M. Gambetta, M. B. Rothwell, G. A. Keefe, M. Steffen, D. P. Pappas, "Improved superconducting qubit coherence using titanium nitride", Appl. Phys. Lett., vol. 103, pp. 012602, 2013. https://doi.org/10.1063/1.4813269
  20. S. H. Kim, D.-G. Ha, G. Y. Park, J. Choi, J. H. Park, W. Song, S. G. Lee, H. Im, H. Kim, Y. Chong, "Power-dependent measurement of quality factor of superconducting microwave resonators at mK temperature", CPEM Digest, CPEM2014, Rio de Janeiro, Brazil, 2014.
  21. M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman, R. J. Schoelkopf, "Reaching 10ms single photon lifetimes for superconducting aluminum cavities", Appl. Phys. Lett., vol. 102, pp. 192604, 2013. https://doi.org/10.1063/1.4807015
  22. Z. K. Minev, I. M. Pop, M. H. Devoret, "Planar superconducting whispering gallery mode resonators", Appl. Phys. Lett., vol. 103, pp. 142604, 2013. https://doi.org/10.1063/1.4824201
  23. D. Oates, D. A. Braje, "Dielectric resonators for understanding two-level systems", ASC2014, Charlotte, NC, Aug. 2014.