DOI QR코드

DOI QR Code

Intercomparison of Number Concentrations by CPCs using Generated Particles in Chamber

챔버 내 발생 입자를 이용한 CPC 수농도 비교 평가

  • Bae, Min-Suk (Department of Environmental Engineering, Mokpo National University) ;
  • Park, Da-Jeong (Department of Environmental Engineering, Mokpo National University) ;
  • Park, Seung-Shik (Department of Environment and Energy Engineering, Chonnam National University) ;
  • Chen, Wei-Nai (Research Center for Environmental Changes(RCEC), Academia Sinica)
  • 배민석 (국립목포대학교 환경공학과) ;
  • 박다정 (국립목포대학교 환경공학과) ;
  • 박승식 (전남대학교 환경에너지공학과) ;
  • Received : 2014.10.13
  • Accepted : 2014.11.24
  • Published : 2014.12.31

Abstract

Two butanol-based Condensation Particle Counters (CPC 3022, CPC 3025), three water-based CPCs (CPC3781, CPC3785${\times}$2), a Gardner Counter, a Fast Mobility Particle Sizer (FMPS), and an Aerosol Electrometer (AE) were deployed to measure the number concentrations from atomized aerosol under six different conditions. Comparisons of particle number concentrations measured by the CPCs, FMPS, and AE were conducted to evaluate the performance of the each CPCs using laboratory generated artificial particles such as NaCl, succinic acid ($C_4H_6O_4$), and particles generated by propane torch & heat gun in the chamber. Good correlation between the CPC3025 and FMPS was observed for the total particle number concentrations in the size range 15 nm to 90 nm. In addition, this paper suggests that photometric mode in water-based CPC3785 could not be used as quantitative of number concentrations for CPC3785.

Keywords

References

  1. Agarwal, J.K. and G.J. Sem (1980) Continuous flow, single-particle-counting condensation nucleus counter, Aerosol Sci. Technol., 11(4), 343-357. https://doi.org/10.1016/0021-8502(80)90042-7
  2. Bae, M.S. and J.S. Oh (2010) Comparison of Nano Particle Size Distributions by Different Measurement Techniques, J. Korean Soc. for Atmos. Environ., 26(2), 219-233. https://doi.org/10.5572/KOSAE.2010.26.2.219
  3. Bae, M.S., J.J. Schwab, O. Hogrefe, B.P. Frank, G.G. Lala, and K.L. Demerjian (2010) Characteristics of size distributions at urban and rural locations in New York, Atmos. Chem. Phys., 10, 4521-4535. https://doi.org/10.5194/acp-10-4521-2010
  4. Bae, M.S., J.J. Schwab, Q. Zhang, O. Hogrefe, K.L. Demerjian, S. Weimer, K. Rhoads, D. Orsini, P. Venkatachari, and P.K. Hopke (2007) Interference of organic signals in highly time resolved nitrate measurements by low mass resolution aerosol mass spectrometry, J. Geophys. Res., 112, D22305. https://doi.org/10.1029/2007JD008614
  5. Bae, M.S., S.S. Park, and Y.J. Kim (2013) Characteristics of Carbonaceous Aerosols Measured at Gosan - Based on Analysis of Thermal Distribution by Carbon Analyzer and Organic Compounds by GCMS, J. Korean Soc. for Atmos. Environ., 29(6), 722-733. https://doi.org/10.5572/KOSAE.2013.29.6.722
  6. Biswas, S., P. Fine, M. Geller, S. Hering, and C. Sioutas (2005) Performance Evaluation of a Recently Developed Water-Based Condensation Particle Counter, Aerosol Sci. Technol., 39, 419-427. https://doi.org/10.1080/027868290953173
  7. Chang, H.Y., L. Huang, J.Y. Shin, F. Artigas, and Z.H. Fan (2014) Characterization of concentration, particle size distribution, and contributing factors to ambient hexavalent chromium in an area with multiple emission sources, Atmos. Environ., 94, 701-708. https://doi.org/10.1016/j.atmosenv.2014.06.004
  8. Freutel, F., J. Schneider, F. Drewnick, S.L. von der Weiden-Reinmuller, M. Crippa, A.S.H. Prevot, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, R. Sarda-Esteve, J.F. Burkhart, S. Eckhardt, A. Stohl, V. Gros, A. Colomb, V. Michoud, J.F. Doussin, A. Borbon, M. Haeffelin, Y. Morille, M. Beekmann, and S. Borrmann (2013) Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: meteorology and air mass origin dominate aerosol particle composition and size distribution, Atmos. Chem. Phys., 13, 933-959. https://doi.org/10.5194/acp-13-933-2013
  9. Gonzalez-Castanedo, Y., T. Moreno, R. Fernandez-Camacho, A. Campa, A. Alastuey, X. Querol, and J. Rosa (2014) Size distribution and chemical composition of particulate matter stack emissions in and around a copper smelter, Atmos. Environ., 98, 271-282. https://doi.org/10.1016/j.atmosenv.2014.08.057
  10. Hering, S.V. and M.R. Stolzenburg (2005) A Method for Particle Size Amplification by Water Condensation in a Laminar, Thermally Diffusive Flow, Aerosol Sci. Technol., 39(5), 428-436. https://doi.org/10.1080/027868290953416
  11. Hogan, A.W. and G. Gardner (1968) A nucleus counter of increased sensitivity, J. Res. Atmos., 3, 59-61.
  12. Hsieh, L.Y., S.C. Kuo, C.L. Chen, and Y.I. Tsai (2007) Origin of low-molecular-weight dicarboxylic acids and their concentration and size distribution variation in suburban aerosol, Atmos. Environ., 41(31), 6648-6661. https://doi.org/10.1016/j.atmosenv.2007.04.014
  13. Jeong, C.H. and G.J. Evans (2009) Inter-Comparison of a Fast Mobility Particle Sizer and a Scanning Mobility Particle Sizer Incorporating an Ultrafine Water-Based Condensation Particle Counter, Aerosol Sci. Technol., 43(4), 364-373. https://doi.org/10.1080/02786820802662939
  14. Kang, E., W.H. Brune, S.W. Kim, S.C. Yoon, M.H. Jung, and M. Lee (2011) A Preliminary PAM Measurement of Ambient Air at Gosan, Jeju to Study the Secondary Aerosol Forming Potential, J. Korean Soc. for Atmos. Environ., 27(5), 534-544. https://doi.org/10.5572/KOSAE.2011.27.5.534
  15. Li, Y.J., B.Y.L. Lee, J.Z. Yu, N.L. Ng, and C.K. Chan (2013) Evaluating the degree of oxygenation of organic aerosol during foggy and hazy days in Hong Kong using high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS), Atmos. Chem. Phys., 13, 8739-8753. https://doi.org/10.5194/acp-13-8739-2013
  16. Park, S.S., S.Y. Sim, M.S. Bae, and J.J. Schauer (2013) Size distribution of water-soluble components in particulate matter emitted from biomass burning, Atmos. Environ., 73, 62-72. https://doi.org/10.1016/j.atmosenv.2013.03.025
  17. Plaza, J., M. Pujadas, F.J. Gomez-Moreno, M. Sanchez, and B. Artinano (2011) Mass size distributions of soluble sulfate, nitrate and ammonium in the Madrid urban aerosol, Atmos. Environ., 45, 4966-4976. https://doi.org/10.1016/j.atmosenv.2011.05.075
  18. Ruths, M., C. Bismarck-Osten, and S. Weber (2014) Measuring and modelling the local-scale spatio-temporal variation of urban particle number size distributions and black carbon, Atmos. Environ., 96, 37-49. https://doi.org/10.1016/j.atmosenv.2014.07.020
  19. Sem, G.J. (2002) Design and performance characteristics of three continuous-flow condensation particle counters: a summary, Atmos. Res., 62, 267-294. https://doi.org/10.1016/S0169-8095(02)00014-5

Cited by

  1. Diurnal Size Distributions of Black Carbon by Comparison of Optical Particulate Measurements - Part I vol.32, pp.1, 2016, https://doi.org/10.5572/KOSAE.2016.32.1.001