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ABSTRACT

Accurate prediction of peak bloom dates (PBD) of flowering cherry trees is critical for organizing local

cherry festivals and other associated cultural and economic activities. A two-step phenology model is

commonly used for predicting flowering time depending on local temperatures as a result of two

consecutive steps followed by chill and heat accumulations. However, an extensive computation

requirement for parameter estimation has been a limitation for its practical use. We propose a sequential

parameterization method by exploiting previously unused records of development stages. With an extra

constraint formed by heat accumulation between two intervening stages, each parameter can then be

solved sequentially in much shorter time than the brute-force method. The result was found to be almost

identical to the previous solution known for cherry trees (Prunus × yedoensis) in the Tidal Basin,

Washington D.C.
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I. Introduction

Cherry blossoms are celebrated to signify the onset of

spring in many countries and cultures around the

world. Cities and towns organized cherry blossom fes-

tivals that are centered on peak bloom of their local

cherry trees. Therefore, it is critical to predict peak

bloom date of these trees accurately using local climate

data. The phenology of flowering trees including dor-

mancy release, bud break, floral development, and

peak bloom is often described using thermal time accu-

mulations. A two-step method was proposed to predict

bud-burst after dormancy release, which was modeled

with two consecutive steps of chill and heat unit accu-

mulations (Cesaraccio et al., 2004). The model was

later modified to predict flowering time, with an

assumption that the flowering was also a consequence

of extended heat accumulation (Yun, 2006).

While this approach was able to estimate peak bloom

dates of flowering cherry trees in the Tidal Basin,

Washington D.C., with reasonable accuracy (Chung et

al., 2011), adapting the model for new location and

variety required an arduous parameterization process

through extensive grid search. This brute-force method

has several shortcomings. Firstly, a large amount of

computation time was required for the grid search
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when finding an optimal parameter set. Secondly, the

parameter space was indeed not unimodal, leading to

multiple solutions with a low cost of error. Thirdly,

available observation records were not fully exploited,

but only peak bloom dates were used. Intermediate

development stages are often reported together and

they could possibly improve parameterization.

In this study, we propose a sequential parameter cal-

ibration algorithm to address these issues. Each param-

eter is optimized individually with an additional constraint

on heat accumulation between two development stages.

When parameterized with the existing dataset from

Tidal Basin, the result from the new approach was

almost identical to the known solution found by brute-

force method but with smaller errors and considerably

reduced computation times (i.e., less than a minute

compared to days). 

II. Materials and Methods

2.1. Peak bloom model

The phenology of flowering is modeled with consec-

utive accumulation of two types of thermal units: chill

days and anti-chill days. The unit is a degree day above

0oC and partitioned with base temperature (Tc) and its

relation to daily maximum and minimum temperatures

(Cesaraccio et al., 2004). Heating unit (Ca) is calcu-

lated first and its difference with total degree day

becomes chilling unit (Cd). Once a rest period of dor-

mancy is initiated in October 1, the chilling units need

to be accumulated up to chill requirement (Rc). It is

then considered the dormancy has released and moved

onto a quiescence period. From this point, the heating

units are accumulated in the opposite direction to reach

heat requirement (Rh) until peak bloom occurs. Conse-

quently, an estimated peak bloom date  of year y

can be obtained by a function f of three parameters, ,

, and Rh, as shown in Eq. (1). Fig. 1 illustrates an

example run of the model with associated parameters

and variables.

(1)

2.2. Phenological stages

The U.S. National Park Service monitors flower

development of cherry trees (e.g., Prunus × yedoensis)

in the Tidal Basin, Washington D.C. in regards with

five distinct stages: green color in buds (GC), florets

visible (FV), extension of florets (EF), peduncle elon-

gation (PE), puffy white (PW), and peak bloom (PB).

The first stage is usually detected in mid February to

early March, and then followed by next stages until

peak bloom, which usually happens around late March

or early April. As visible changes should be accompa-

nied by bud burst after dormancy release (DR), notic-

ing these stages presumably mean that it is in the

second step of the model, where only heat accumula-

tion is counted. Eq. (2) states that the heat requirement

δ for year y between any two stages, α and β, is simply

a sum of heat accumulation Ca in the corresponding

period p. Tc is required for driving Ca, but Rc is not,

because only the relative difference is needed in this

case.

(2)

2.3. Sequential optimization

Calibrating three parameters, Tc, Rc, and Rh, is an 

optimization problem of minimizing sum of squared

differences between the estimated peak bloom dates

( ) and the actual dates (PB) observed in the site.

Instead of a time-consuming grid search fitting all

parameters simultaneously (Chung et al., 2011), a

sequential algorithm is applied for fitting each parame-

ter separately, using other parameters discovered in the

PB̂

Tc

Rc

PBy
ˆ fTc Rc Rh, ,

y( )=

δTc α β, ,
y( ) ca p Tc,( )

p αy=

βy

∑=

PB̂

Fig. 1. An illustration of the peak bloom model ran for the

year of 2013 in the Tidal Basin, Washington D.C. The param-

eter set (Tc = 4.28, Rc = -64.38, Rh = 238.13) was found by

the proposed algorithm. Chilling units were accumulated

until dormancy release at January 26, and then heating units

started growing in the other direction. The estimated peak

bloom date was April 9 instead of actual peak bloom date,

April 10. Blue and red shades are daily units of chilling (Cd)

and heating (Ca). A gray shade represents a daily variation

of temperature observed at Reagan National Airport located

4 km away from the site.
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previous steps. Sequential parameter estimation is often

preferred over simultaneous procedure when phenology

parameters have no known interdependencies (Wallach et

al., 2014).

Tc is the first parameter in a series as it controls the

amount of thermal units, thus affecting how much degree

Rc and Rh are being filled up. Assuming an equivalent

heat requirement for each year y between the first and

last stages, GC and PB,  is estimated by minimizing

sum of annual variances as shown in Eq. (3).

(3)

Rc can be found in a similar manner. With a chilling

unit (Cd) for the range determined by a given , a dor-

mancy release date (DR) now becomes a function of

Rc.  is then estimated by minimizing sum of vari-

ances of the entire heat requirement ( )

as shown in Eq. (4).

(4)

After two parameters revealed, Rh is solved by an

original scheme shown in Eq. (5) that minimizes sum

of differences between estimated and actual peak

bloom dates,  and PB, respectively.

(5)

III. Results and Discussion

3.1. Calibration

Phenology observation records for cherry trees (Pru-

nus × yedoensis) in the Tidal Basin, Washington D.C.

were used for parameterization. The starting year was

set to 1992 because the detailed records have been only

available since then. The end year was chosen to be

2010 for comparison with previous research (Chung et

al., 2011).

Our approach resulted in Tc estimate of 4.28oC,

which is almost identical to the solution found in

Chung et al. (2011) using a grid search method (Table

1). On the other hand, our Rc and Rh were slightly

larger by 14.52 and 17.03 respectively than those from

Chung et al. (2011). Interestingly, the entire heat

requirements (Rh-Rc) were still very close to each other.

It would suggest that our solution successfully captured

a right amount of heat accumulation required for the

phenology development.

As the performance of the previous algorithm was

dependent on the grid size, it could easily become very

slow. A fine-grained search whose Tc spanning from

0.0oC to 10.0oC by 0.1oC, Rc from -200 to 0 by 1, and

Rh from 100 to 200 by 1, would generate a grid of

100·200·200=4,000,000 points, which may take up to

several days to run. On the other hand, our algorithm

had a constant running time, less than a minute, which

would be almost negligible on regular circumstances.

Various metrics indicated that our solution was mar-

ginally better in terms of error, at least during the cali-

T̂c

T̂c     
Tc

lim δTc α β, ,
y( ) δTc α β, ,

–( )
2

α GC=

β PB=

y

∑=argmin

Tc
ˆ

R̂c

δTc DR PB,,
Rh Rc–=

PB̂

T̂c     
Rh

lim f
Tˆ c Rˆ c Rh, ,

y( ) PBy–( )
2

y

∑= argmin

Table 1. Comparison of two solutions in various metrics: root mean square error (RMSE), mean absolute error (MAE), max-

imum absolute error (XE), and total error (TE). Error units are in days and time unit is in seconds. The running time of brute-

force algorithm depends on the number of grid points N, which may scale up to millions.

Algorithm Tc Rc Rh Rh-Rc RMSE MAE XAE TE Time

Brute-force 4.3 -78.9 221.1 300.0 3.69 2.7 9 51 0.25N

Sequential 4.28 -64.38 238.13 302.51 3.18 2.6 7 50 33

Fig. 2. Evaluation of calibrated parameters. The actual peak

bloom dates are plotted with estimated dates from two dif-

ferent parameter sets. A brute-force method was parameter-

ized with data of the Tidal Basin from 1991 to 2010. Our

solution was calibrated with the same data, but from 1992,

due to missing phenology observation.
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bration period. Fig. 2 shows a plot of peak bloom dates

and corresponding errors from each parameter set.

3.2. Selective constraints

The most important part of our sequential optimiza-

tion algorithm is lying on the use of additional con-

straints formed by observing multiple phenological

stages. Not only GB used in the proposed method, dif-

ferent stages could have been plugged into α for esti-

mating Tc in Eq. (3). However, the profiling result

shown in Fig. 3 suggested that other constraints might

not be sufficient to construct a stable constraint. Only

GB and FV had approached a previously known value

of Tc, 4.3oC, with 4.28oC and 4.40oC respectively, while

others had kept decreasing like until PW reached 0.0001oC.

The heat variance is basically controlled by Tc in the

middle balancing out an amount of heating and chilling

units. Once Tc becomes smaller than minimum temper-

ature, it can no longer help minimizing the variance. Tc

of 0oC is actually a boundary case by definition where

no chilling unit can be generated at all. Therefore, later

stages from much warm environments are apparently

more susceptible to degeneracy.

3.3. Strengths and limitations of new approach

A sequential algorithm could estimate a decent

parameter set that almost matches up with one found

from a brute-force method. The entire process took

only a fraction of time compared to the previous

method, while calibration error was even smaller. How-

ever, its own drawbacks were also revealed. Observa-

tion of other development stage is mandatory and requires

extra attention on its selection. Temperature range

between two stages should span around base tempera-

ture, Tc, to ensure valid thermal accumulation.

IV. Conclusions

We propose a sequential parameter calibration algo-

rithm for a cherry blossom phenology model. While

shown its own strength in terms of speed and accuracy,

it may not be always applicable because of the extra

requirement. Additional constraints should be carefully

chosen from intervening development stages that can

balance out thermal unit generation. To apply this

method successfully, it is advised to expand observa-

tions to include earlier phenological developments dur-

ing heat accumulation step for avoiding the degeneracy

issue on optimization.

적 요

벚꽃의 만개일은 관련 행사일정을 결정하는 중요한

요소로써 생육기간 중 기온에 따른 변화의 폭이 크다.

이를 예측하기 위한 방법으로는 벚꽃의 발달을 휴면기

와 생장기의 2단계로 구분하여 저온(chill)과 고온

(heat) 요구에 대한 온도시간(thermal time) 누적을 기

술하는 모형이 개발되어 있다. 하지만 모수 추정시 모

수공간내 일정 간격의 격자 전체를 계산하여 많은 시

간을 소모한다는 단점이 있었다. 본 연구에서는 기존

모형이 고려하지 않던 벚꽃 발달의 중간단계 관측자료

를 활용하여 고온요구에 대한 새로운 조건을 추가하고,

이를 기반으로 각 모수를 순차적으로 추정하여 최적화

시간을 단축하는 새로운 방법을 제안한다. 미국 워싱턴

DC 지역의 벚꽃개화 관측 자료를 기준으로 검증한 결

과, 기존 모형에서 제안된 모수와 근사한 값을 단축된

시간 내에 계산해내는 것을 확인하였다.
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