DOI QR코드

DOI QR Code

Optimal Airflow Rate and Location of Ventilation System using Analytic Hierarchy Process and Chaos Genetic Algorithm

분석적 계층 과정과 카오스 유전자 알고리즘을 이용한 전열교환 환기 시스템의 최적 유량과 설치위치 결정

  • 김영진 (선문대학교, 건축사회환경학부) ;
  • 박철수 (성균관대학교 건축토목공학부)
  • Received : 2014.08.25
  • Accepted : 2014.11.19
  • Published : 2014.12.30

Abstract

This paper addresses an optimal design problem of ERV (Energy Recovery Ventilator) system that seeks for proper sizing and location of supply diffusers/exhaust registers. A typical of a residential unit consisting of three bedrooms, a living room, and a kitchen was selected. The elements in a cost function includes energy use, thermal comfort, and $CO_2$ concentration, leading to multi-criteria optimization problem. In this study, the aforementioned optimization problem was solved using Analytic Hierarchy Process (AHP), Chaos Genetic Algorithm (CGA) and EnergyPlus 8.0. AHP was employed to calculate relative weighting factors between the aforementioned different three performance aspects. Since the given model-based optimization problem is discontinuous and nonlinear, the authors integrated CGA to EnergyPlus. It has been elaborated in the paper that the CGA approach is superior to a traditional Genetic Algorithm (GA) in terms of simulation time and searching for global optima.

Keywords

Acknowledgement

Supported by : 중소기업청

References

  1. 김영진, 박철수, 유전자 알고리즘, 파레토 최적, 환기 시뮬레이션을 통합한 환기 시스템 최적설계, 대한건축학회논문집 제 24권 1호, p.p.237-245, 2008
  2. 김영진, 박철수, 재실자 예측과 핑퐁 방법을 통한 환기 시스템 최적제어 시뮬레이션, 대한건축학회논문집 제27권 3호, p.p.287-295, 2011
  3. 문희태, 카오스와 비선형동역학, 서율대학교출판문화원, 2001
  4. 박철수, 규범적 건물성능평가방법, 대한건축학회논문집 계획계 제 22권 11호, p.p.337-344, 2006
  5. 이윤규, 空氣流動 解析에 의한 共同住宅 換氣性能 豫測모델에 關한 硏究, 연세대학교 박사학위논문, 1997
  6. 여명석, 석호태, 김광우, 공동주택 온수온돌 바닥복사 난방시스템의 온수온도 제어방법에 관한 연구, 대한건축학회논문집, 제 14권 12호, p.p.203-210, 1998
  7. 조근태, 조용곤, 강현수, 앞서가는 리더들의 분석적 계층 의사 결정, 동현출판사, 2003
  8. 현세훈, 박철수, 노후 공동주택 구조 및 설비성능 개선 기술 개발, 건설교통부 1차년도 연차실적 보고서, 2006
  9. KS., KS F 2292-88: 창호 기밀성 시험 방법, 2003
  10. ASHRAE., ASHRAE Handbook Fundamentals. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc, 2013
  11. Chiang, C.M. and Lai, C.M., A study on the comprehensive indicator of indoor environment assessment for occupants' health in Taiwan, Building and Environment, Vol.37, p.p.387-392, 2002 https://doi.org/10.1016/S0360-1323(01)00034-8
  12. DOE., EnergyPlus 8.0 Input/Output Reference: The Encyclopedic Reference to EnergyPlus Input and Output, US Department Of Energy, 2011a
  13. DOE.. EnergyPlus 8.0 Engineering Reference: The Encyclopedic Reference to EnergyPlus Calculations, U.S. Department Of Energy, 2011b
  14. Ebrahimzadeh, R. and Jampour, M., Chaotic Genetic Algorithm based on Lorenz Chaotic System for Optimization Problems, Intelligent Systems and Applications, Published Online April 2013 in MECS (http://www.mecs-press.org/), p.p.19-24, 2013
  15. Gandomi, A.H., Yun, G.J., Yang, X.S. and Talatahari, S., Chaos-enhanced accelerated particle swarm optimization, Commun Nonlinear Sci Nunber Simulat, Vol.18, p.p.327-340, 2013 https://doi.org/10.1016/j.cnsns.2012.07.017
  16. Gharooni-fard, G., Moein-darbari, F., Deldan, H. Morvaridi, A., Scheduling of scientific workflows using a chaos-genetic algorithm, Procedia Computer Science, Vol.1, pp.1445-1454, 2010 https://doi.org/10.1016/j.procs.2010.04.160
  17. Hopfe, C.J., Augenbroe, G. and Hensen, J., Multi-criteria decision making under uncertainty in building performance assessment, Building and Environment, Vol.69, p.p.81-90, 2013 https://doi.org/10.1016/j.buildenv.2013.07.019
  18. Hopfe, C.J., Emmerich, M.T.M. and Wright, J.A., Pareto optimization and aggregation: a new approach to integrate optimization with user criteria in BPS, Proceedings of the COLEB workshop (Computational Optimization of Low-Energy Buildings), March 6-7, ETH Zurich, Switzerland, p.p.31-32, 2014
  19. IBPSA. Proceedings of the IBPSA conference ('87. '91, '93, '95, '97, '99, '01, '03, '05, '07, '09, '11, '13), 1987-2013
  20. Kim, Y.J., Ahn, K.U., Park, C.S. and Kim, I.H., Gaussian emulator for stochastic optimal design of a double glazing system, Proceedings of the 13th IBPSA Conference, August 25-28, Chambery, France, p.p.2217-2224, 2013
  21. Keener, J., Future of Green Building Credit System in Jeopardy, a report by Platts (http://www.enn.com/aff.html?id=40, accessed on July 2006), 2004
  22. May, R.M., Simple mathematical models with very complicated dynamics, Nature, 261(5560), p.p.459-467, 1976 https://doi.org/10.1038/261459a0
  23. Oh, S.M., Kim, Y.J., Park, C.S. and Kim, I.H., Process-driven BIM-based optimal design using integration of EnergyPlus, genetic algorithm, and pareto optimality, Proceedings of the 12th IBPSA Conference, November 14-16, Sydney, Australia, p.p.894-901, 2001
  24. Phatak, S.C. and Rao, S.S., Logistic map: A possible random-number generator, The American Physical Society, Vol.51, No.4, p.p.3670-3678, 1995
  25. Satty, T.L., The Analytic Hierarchy Process, McGraw-Hill, New York, NY, USA, 1980
  26. Schuster, H.G., Deterministic chaos: An introduction (2nd revised ed.). Federal Republic of Germany: Physick-Verlag, GmnH, Weinheim., 1988
  27. Scofield, J.H., Do LEED-certified buildings save energy? Not really, Energy and Buildings, Vol.41, No.12, p.p.1386-1390, 2009 https://doi.org/10.1016/j.enbuild.2009.08.006
  28. Stein, B., Reynolds, J., Grondzik, W. and Kwok, A., Mechanical and electrical equipment for buildings, John Wiley & Sons, Inc, 2006
  29. Walton, G.N. and Dols, W.S., CONTAMW 2.4 User Guide and Program Documentation. NISTIR 7251, Gaithersburg, MD, National Institute of Standards and Technology, 2005
  30. Wong, J.K.W. and Li, H., Application of the analytic hierarchy process (AHP) in multi-criteria analysis of the selection of intelligent building systems, Building and Environment, Vol.43, p.p.108-125, 2006
  31. Wright, J. A. and Loosemore, H.A. and Farmani, R., Optimization of building thermal design and control by multi-criterion genetic algorithm, Energy and Buildings, Vol.34, p.p.959-972, 2002 https://doi.org/10.1016/S0378-7788(02)00071-3
  32. Yang, D., Li, G. and Cheng, G., On the efficiency of chaos optimization algorithms for global optimization, Chaos, Solitons & Fractals, Vol.34, p.p.1366-1375, 2007 https://doi.org/10.1016/j.chaos.2006.04.057