DOI QR코드

DOI QR Code

잉크젯 프린팅된 Cu 박막의 응력해소를 통한 전기적 특성 개선

The Improvement of Electrical Characteristics of Inkjet-printed Cu films with Stress Relaxation during Thermal Treatment

  • Yi, Seol-Min (Institute of applied materials, Karlsruhe Institute of Technology) ;
  • Joo, Young-Chang (Department of Materials Science and Engineering, Seoul National University)
  • 투고 : 2014.12.01
  • 심사 : 2014.12.16
  • 발행 : 2014.12.30

초록

미래형 유연소자 개발 시 비용감소 및 공정적합성 개선을 위해 동박을 잉크젯 프린팅법을 이용해 공중합체 유연기판 상 형성하고, 전기적 특성에 열처리 분위기가 미치는 영향을 확인하기 위해 3 종류의 환원분위기에서 열처리를 진행하여 보았다. 그 결과 200도의 낮은 온도에서 환원 특성이 뛰어난 포름산 분위기에서 전도체 수준의 비저항은 얻을 수 있었으나, 열처리 시 발생하는 응력으로 인해 발생된 표면균열에 기인해 그 값이 기존 동박에 비해 매우 높았다. 이에 비정질재료에서 응용되는 응력해소법을 응용하여 표면균열을 억제한 결과 230도 열처리 시 기존 열처리 방법에서는 $7.4{\mu}{\Omega}cm$의 비저항을 보이나, 응력해소를 통한 표면 균열이 억제된 시편에서는 $3.4{\mu}{\Omega}cm$의 비저항 값을 얻을 수 있었다. 특히 등온열처리에 의한 응력해소 효과를 확인하기 위해 동일 온도에서 등온시간 없이 열처리를 진행한 결과, 표면균열이 억제되지 못함을 확인할 수 있었다.

Using flexible bismaleimide-triazine co-polymer as a substrate, inkjet-printed Cu films were also investigated for low-cost and process feasibility of flexible electronics. After annealing at $200^{\circ}C$ for 1 h under various reducing ambient, surface color was changed to red and electrical resistivity was decreased to the level of conductor under formic acid ambient. However, its resistivity was much higher than conventional copper films due to surface crack. In order to reduce the residual film stress after annealing, additional isothermal treatment was inserted before anneal hiring the stress relaxation applied in processes of amorphous materials. As a result, no surface crack was observed and electrical resistivity of $3.4{\mu}{\Omega}cm$ was measured after annealing at $230^{\circ}C$ with stress relaxation while electrical resistivity of $7.4{\mu}{\Omega}cm$ was observed after normal annealing without relaxation. The effect of stress relaxation was also confirmed by observing surface crack after decreasing the relaxation time to 0 min.

키워드

참고문헌

  1. B. -J. Kim, "Reliability of Metal Electrode for Flexible Electronics", J. Microelectron. Packag. Soc., 20(4), 1 (2013). https://doi.org/10.6117/kmeps.2013.20.4.001
  2. D. Kim, S. Jeong, B. K. Park and J. Moon, "Direct Writing of Silver Conductive Patterns: Improvement of Film Morphology and Conductance by Controlling Solvent Compositions", App. Phy. Lett., 89(26), 264101 (2006). https://doi.org/10.1063/1.2424671
  3. D. Huang, F. Liao, S. Molesa, D. Redinger and V. Subramanian, "Plastic-compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics", J. Electrochem. Soc., 150(7), G412 (2003). https://doi.org/10.1149/1.1582466
  4. J. Perelaer, B. -J. de Gans and U. S. Schubert, "Ink-jet Printing and Microwave Sintering of Conductive Silver Tracks", Adv. Mater., 18(16), 2101 (2006). https://doi.org/10.1002/adma.200502422
  5. J. R. Greer and R. A. Street, "Mechanical Characterization of Solution-derived Nanoparticle Silver Ink Thin Films", J. Appl. Phys., 101(10), 103529 (2007). https://doi.org/10.1063/1.2735404
  6. P. F. Blazdell, J. R. G. Evans, M. J. Edirisinghe, P. Shaw and M. J. Binstead, "The Computer Aided Manufacture of Ceramics Using Multilayer Jet Printing", J. Mater. Sci. Lett., 14(22), 1562 (1995). https://doi.org/10.1007/BF00455415
  7. D. Pede, G. Serra and D. De Rossi, "Microfabrication of Conducting Polymer Devices by Ink-jet Stereolithography", Mater. Sci. Eng: C., 5(3), 289 (1998). https://doi.org/10.1016/S0928-4931(97)00056-8
  8. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and E. P. Woo, "High-resolution Inkjet Printing of All-polymer Transistor Circuits", Science, 290(5499), 2123 (2000). https://doi.org/10.1126/science.290.5499.2123
  9. S. Magdassi and M. B. Moshe, "Patterning of Organic Nanoparticles by Ink-jet Printing of Microemulsions", Langmuir, 19(3), 939 (2003). https://doi.org/10.1021/la026439h
  10. B. J. de Gans, P. C. Duineveld and U. S. Schubert, "Inkjet Printing of Polymers: State of The Art and Future Developments", Adv. Mater., 16(3), 203 (2004). https://doi.org/10.1002/adma.200300385
  11. G. Harsanyi and G. Inzelt, "Comparing Migratory Resistive Short Formation Abilities of Conductor Systems Applied in Advanced Interconnection SYSTEMS", Microelectron. Reliab., 41(2), 229 (2001). https://doi.org/10.1016/S0026-2714(00)00093-7
  12. X. -F. Tang, Z. -G. Yang and W. -J. Wang, "A Simple Way of Preparing High-concentration and High-purity Nano Copper Colloid for Collective Ink in Inkjet Printing Technology", Colloids and Surfaces A: Physicochem. Eng. Aspects, 360(2), 99 (2010). https://doi.org/10.1016/j.colsurfa.2010.02.011
  13. B. K. Park, S. Jeong, D. Kim, J. Moon, S. Lim and J. S. Kim, "Synthesis and Size Control of Monodisperse Copper Nanoparticles by Polyol Method", J. Colloid and Interface Sci., 311(2), 417 (2007). https://doi.org/10.1016/j.jcis.2007.03.039
  14. B. Lee, Y. kim, S. Yang, I. Jeong and J. Moon, "A Low-Cure-temperature Copper Nano Ink for Highly Conductive Printed Electrodes", Current Appl. Phys., 9(2), e157 (2009). https://doi.org/10.1016/j.cap.2009.03.008
  15. B. K. Park, D. Kim, S. Jeong, J. Moon and J. S. Kim, "Direct Writing of Copper Conductive Patterns by Ink-jet Printing", Thin Solid Films, 515(19), 7706 (2007). https://doi.org/10.1016/j.tsf.2006.11.142
  16. K. S. Kim, J. M. Koo, J. W. Joung, B. S. Kim and S. B. Jung, "Electrical Characteristics of Copper Circuit using Inkjet Printing", J. Microelectron. Packag. Soc., 17(3), 43 (2010).
  17. Y. Lee, J. Choi, K. J. Lee, N. E. Scott and D. Kim, "Large-scale Synthesis of Copper Nanoparticles by Chemically Controlled Reduction for Applications of Inkjet-printed Electronics", Nanotechnology, 19(41), 415604 (2008). https://doi.org/10.1088/0957-4484/19/41/415604
  18. K. Nagase, Y. Zheng, Y. Kodama and J. Kakuta, "Dynamic Study of The Oxidation State of Copper in The Course of Carbon Monoxide Oxidation over Powdered CuO and Cu2O", J. Catal., 187(1), 123 (1999). https://doi.org/10.1006/jcat.1999.2611
  19. A. Agrawal, V. Kumar, B. D. Pandey and K. K. Sahu, "A Comprehensive Review on The Hydro Metallurgical Process for The Production of Nickel and Copper Powders by Hydrogen Reduction", Mater. Res. Bull., 41(4), 879 (2006). https://doi.org/10.1016/j.materresbull.2005.09.028
  20. P. J. Soininen, K. -E. Elers, V. Saanila, S. Kaipio, T. Sajavaara and S. Haukka, "Reduction of Copper Oxide Film to Elemental Copper", J. Electrochem. Soc., 152(2), G122 (2005). https://doi.org/10.1149/1.1839491
  21. J. -K. Jung, S. -H. Choi, I. Kim, H. C. Jung, J. Joung and Y. -C. Joo, "Characteristics of Mcrostructure and Electrical Resistivity of Inkjet-printed Nanoparticle Silver Films Annealed under Ambient Air", Phil. Mag., 88(3), 339 (2008). https://doi.org/10.1080/14786430701846198
  22. G. Grimvall, J. Kubat and M. Rigdahl, "A Theory of Stress Relaxation", Mater. Sci. Eng., 27(1), 45 (1977). https://doi.org/10.1016/0025-5416(77)90193-8
  23. I. -M. Park, J. -K. Jung, S. -O. Ryu, K. -J. Choi, B. -G. Yu, Y. -B. Park, S. -M. Han and Y. -C. Joo, "Thermomechanical Properties and Mechanical Stresses of Ge2Sb2Te5 Films in Phase-change Random Access Memory", Thin Solid Films, 517(2), 848 (2008). https://doi.org/10.1016/j.tsf.2008.08.194
  24. A. Witvrouw and F. Spaepen, "Viscosity and Elastic Constants of Amorphous Si and Ge", J. Appl. Phys., 74(12), 7154 (1993). https://doi.org/10.1063/1.355031
  25. S. -M. Yi, J. -H. Lee, N. -R. Kim, S. Oh, S. Jang, D. Kim, J. Joung and Y. -C. Joo, "Improvement of Electrical and Mechanical Properties of Ag NanopartiCulate Films by Controlling the Oxygen Pressure", J. Electrochem. Soc., 157(12), K254 (2010). https://doi.org/10.1149/1.3494216