DOI QR코드

DOI QR Code

WLAN 환경에서 네트워크 가상화를 통한 끊김 없는 핸드오버 매커니즘 연구

A Study on Seamless Handover Mechanism with Network Virtualization for Wireless Network

  • 구기준 (한림성심대학교 정보통신네트워크과) ;
  • 정호균 (한림성심대학교 정보통신네트워크과)
  • Ku, Gi-Jun (Department of Information Communication & Computer Networks, Hallym Polytechnic University) ;
  • Jeong, Ho-Gyoun (Department of Information Communication & Computer Networks, Hallym Polytechnic University)
  • 투고 : 2014.11.25
  • 심사 : 2014.12.15
  • 발행 : 2014.12.30

초록

현재 스마트폰과 같은 무선 환경 기기의 일상화는 IEEE802.11 그룹의 무선 네트워크 사용 환경을 한층 더 확장시키고 있으며, Wi-Fi와 같은 사용자 중심의 상용화 무선 네트워크 요구가 급증하면서 이의 효과적인 활용과 사용자 중심의 끊김없는 핸드오버는 가장 중요한 논점 중에 하나이다. 그리고 현재 이슈화되고 있는 SDN은 데이터센터 내에서 OpenFlow 스위치 간의 비용 및 복잡도를 줄이는 각 플로우 라우팅을 제공한다. 이는 관리자에게 직관적인 제어를 제공하면서 사용자에게는 지연시간을 줄여주는 이점을 제공하고 있다. 본 논문에서는 SDN이 지원하는 네트워크 서비스 재구성 능력을 밀집된 무선네트워크 환경에 적용하여 끊김없는 핸드오버 매커니즘을 연구하고 성능을 검증한다.

The routinized wireless devices such as smart phone have promoted to expand the use of IEEE 802.11 groups. The challenge environments of the wireless network utilizes effectively and user-oriented seamless services that handover is the most desirable issues under the wireless circumstance. In data center software defined network (SDN) has provided the flow routing to reduce costs and complexities. Flow routing has directly offered control for network administrator and has given to reduce delay for users. Under the circumstance of being short of network facilities, SDNs give the virtualization of network environments and to support out of the isolation traffic conditions. It shows that the mechanism of handover makes sure seamless services for higher density of the network infrastructure which is SDN to support network service re-configurable.

키워드

참고문헌

  1. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, "OpenFlow: enabling innovation in campus networks," ACM SIGCOMM Computer Communication Review, Vol. 38, No. 2, Apr. 2008.
  2. G. Athanasiou, T. Korakis, O. Erectin, and L. Tassiulas, "A cross-layer framework for association control in wireless mesh network," IEEE Transactions on Mobile Computing, Vol. 8, No. 1, pp 65-80, Jan. 2009. https://doi.org/10.1109/TMC.2008.75
  3. P. Dely, A. Kassler, L. Chow, N. Bambos, N. Bayer, H. Einsiedler, C. Peylo, D. Mellado and Miguel Sanchez, "A software-defined networking approach for handover management with real-time video in WLANs," Journal of Modern Transportation, Vol. 21, Issue 1, pp 58-65, Mar. 2013. https://doi.org/10.1007/s40534-013-0007-x
  4. B. Kauffmann, F. Bacccelli, A. Chaintreau, K. Papagiannaki and C. Diot, "Measurement-based self organization of interfering 802.11 wireless access networks," in Proceedings of the IEEE Conference on Computer Communication (INFOCOM), Anchorage: AK, pp 1451-1459, May. 2007.
  5. T. Korakis, O. Ercetin, S. Krishamurthy, L.Tassiulas, and S. Tripathi, "Link quality based association mechanism in IEEE 802.11h compliant wireless LANs," in Proceeding of the Workshop on Resource Allocation in Wireless NETwork(RAWNET), Trentino: Italy, pp. 725-730, Apr. 2005.
  6. S. Monin, A. Shalimov, and R. Smeliansky, "Chandelle: smooth and fast WiFi roaming with SDN/OpenFlow," in Proceedings of the 2014 Open Networking Summit, Santa Clara: CA, Mar. 2014.
  7. B. O'Hara, P. Calhoun, and J. Kempf, "CAPWAP problem statement," RFC 3990, Feb. 2005.
  8. IEEE Std 802.21-2008(2009) IEEE standard for local and metropolitan area networks-part21: media independent handover.
  9. IEEE Std 802.11r-2008(Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008)(2008).