DOI QR코드

DOI QR Code

2-[(2,6-Dioxocyclohexyl)methyl]cyclohexane-1,3-dione 유도체의 Tyrosinase 저해활성에 관한 2D-QSAR 분석

2D-QSAR Analyses on The Tyrosinase Inhibitory Activity of 2-[(2,6-Dioxocyclohexyl)methyl]-cyclohexane-1,3-dione Analogues

  • 김상진 (대전보건대학교 화장품과학과, 케모리랩) ;
  • 성낙도 (충남대학교 평화안보대학원 과학수사학과)
  • Kim, Sang-Jin (Department of Cosmetic Science, Daejeon Health Sciences College) ;
  • Sung, Nack-Do (Department of Scientific Criminal Investigation, Chungnam National University)
  • 투고 : 2014.10.13
  • 심사 : 2014.11.20
  • 발행 : 2014.12.31

초록

기질 분자로서 2-[(2,6-dioxocyclohexyl)methyl]cyclohexane-1,3-dione 유도체(1-23)들의 분자 내 치환기($R_1$$R_2$)가 변화함에 따른 tyrosinase 수용체의 저해활성에 관한 2D-QSAR 모델로부터 다음과 같은 결론을 얻었다. 유도된 최적의 2D-QSAR 모델은 $Obs.pI_{50}=-0.295({\pm}0.031)TDM$ $-0.120({\pm}0.014)DMZ+0.135({\pm}0.050)DMX$. $R_2+6.382({\pm}0.17)$이었으며, 예측성($q^2=0.843$)보다는 상관성($r^2=0.905$)이 큰 모델이었다. Tyrosinase 저해활성은 TDM > $DMX.R_2{\geq}DMZ$ 순으로 영향을 미치었으며, 기질분자의 소수성(ClogP > 0)이 크고, $R_1$-치환기의 입체적 크기가 클수록 더욱 증가하는 경향을 나타내었다. 모델을 분석한 결과, 분자 내 $R_2$-치환기 상 X-축 성분의 쌍극자능률($DMX.R_2$)이 클수록, 그리고 분자 전체의 쌍극자능률(TDM; Total Dipole Moment)과 Z-성분의 쌍극자능률(DMZ; Dipole Moment of Z-Component)이 작을수록 기질분자의 tyrosinase 저해활성이 높아짐을 암시하였다. 따라서 tyrosinase 저해활성은 기질분자 및 $R_2$-치환기의 전자 친화력에 기인한 것으로 예상되었다. 그러므로 저해활성을 증가시키려면 분자 내 극성 그룹을 소수성에 기여하는 비극성 작용기로 대체함이 바람직할 것으로 예측되었다.

The following conclusion was made from the 2D-QSAR model for the tyrosinase inhibitory activity according to the variation of the substituents R1 and R2 in analogues of compound 2-[(2,6-dioxocyclohexyl)methyl]cyclohexane- 1,3-dione (1-23). The best optimized 2D-QSAR model was $Obs.pI_{50}=-0.295({\pm}0.031)TDM$ $-0.120({\pm}0.014)DMZ+0.135({\pm}0.050)DMX.R_2+6.382({\pm}0.17)$, and the correlation $r^2=0.905$) of which was greater than its predictability ($q^2=0.843$). The magnitude of the effect of tyrosinase inhibitory activities was in order of TDM > $DMX.R_2{\geq}DMZ$, and it tended to increase as the hydrophobicity of substrate molecule (ClogP > 0) as well as the steric favor of substituent $R_1$ increased. The analysis of the model implies that inhibitory activity of substrate molecule will increase as $DMX.R_2$ (Dipole moment X component of $R_2$-substituent) increases, while TDM (Total Dipole Moment) and DMZ(Dipole Moment of Z-Component) decrease. As such, it is deemed feasible to conclude, that in order to increase the inhibitory effect, it would be rather desirable to replace the polar groups within the molecules with non-polar functional groups.

키워드

참고문헌

  1. S. Parvez, M. Kang, H. S. Chung, C. Cho, M. C. Hong, M. K. Shin, and H. Bae, Survey and mechanism of skin depigmenting and lightening agents, Phytother. Res., 20(11), 921 (2006). https://doi.org/10.1002/ptr.1954
  2. K. Iozumi, G. E. Hoganson, R. Pennella, M. A. Everett, and B. B. Fuller, Role of tyrosinase as the determinant of pigmentation in cultured human melanocytes, J. Invest. Dermatol., 100(6), 806 (1993). https://doi.org/10.1111/1523-1747.ep12476630
  3. G. Prota, Progress in the chemistry of melanins and related metabolites, Med. Res. Rev., 8(4), 525 (1988). https://doi.org/10.1002/med.2610080405
  4. S. Akiu, Y. Suzuki, T. Asahara, Y. Fujinuma, and M. Fukuda, Inhibitory effect of arbutin on melanogenesis- biochemical study using cultured B16 melanoma cells, Jpn. J. Dermatol., 101(6), 609 (1991).
  5. J. S. Chen, C. Wei, and M. R. Marshall, Inhibition mechanism of kojic acid on polyphenol oxidase, J. Agric. Food Chem., 39(11), 1897 (1991). https://doi.org/10.1021/jf00011a001
  6. K. Maeda and M. Fukuda, Arbutin: mechanism of its depigmenting action in human melanocyte culture, J. Pharmacol. Exp. Ther., 276(2), 765 (1996).
  7. A. Palumbo, M. d'Ischia, G. Misuraca, and G. Prota, Mechanism of inhibition of melanogenesis by hydroquinone, Biochim. Biophys. Acta., 1073(1), 85 (1991). https://doi.org/10.1016/0304-4165(91)90186-K
  8. T. S. Chang, An updated review of tyrosinase inhibitors, Int. J. Mol. Sci., 10(6), 2440 (2009). https://doi.org/10.3390/ijms10062440
  9. J. H. Seok, S. Y. Lee, E. J. Chae, and S. W. Choi, Skin whitening effects of Caragana sinica Rehder extract fermented by Saccharomyces cerevisiae KCTC 7913, J. Soc. Cosmet. Scientists Korea, 36(3), 207 (2010).
  10. S. Y. Lee, S. M. Lee, W. B. Heo, J. G. Kim, and Y. H. Kim, Effect of Nigella sativa oil on melanogenesis, J. Soc. Cosmet. Scientists Korea, 37(4), 319 (2011).
  11. Y. H. Chang, J. S. Ryu, S. H. Lee, S. G. Park, H. D. Bhattarai, J. H. Yim, and M. H. Jin, Inhibition of melanogenesis by ramalin from the antarctic lichen Ramalina terebrata, J. Soc. Cosmet. Scientists Korea, 38(3), 247 (2012). https://doi.org/10.15230/SCSK.2012.38.3.247
  12. S. M. Lee, J. E. Kim, M. J. Oh, J. D. Lee, Y. J. Jeon, and B. Kim, Biological potential of enzymatic and polyphenol extracts from Ecklonia cava, J. Soc. Cosmet. Scientists Korea, 39(1), 19 (2013). https://doi.org/10.15230/SCSK.2013.39.1.019
  13. J. Y. Lee, K. R. Im, T. K. Jung, and K. S. Yoon, The inhibitory effects of Alnus Japonica Steud. extract on melanogenesis, J. Soc. Cosmet. Scientists Korea, 39(2), 159 (2013). https://doi.org/10.15230/SCSK.2013.39.2.159
  14. S. S. Kwon, S. H. Jeon, J. M. Jeon, J. W. Cheon, and S. N. Park, Antioxidative effects of Inula britannica var. chinensis flower extracts according to the flowering period and species of Inula britannica var. chinensis, J. Soc. Cosmet. Scientists Korea, 39(3), 195 (2013). https://doi.org/10.15230/SCSK.2013.39.3.195
  15. S. B. Han, S. S. Kwon, B. J. Kong, K. J. Kim, and S. N. Park, Antioxidative effect and tyrosinase inhibitory activity of the unripened fruit extract of Rubus coreanus Miquel, J. Soc. Cosmet. Scientists Korea, 39(4), 295 (2013). https://doi.org/10.15230/SCSK.2013.39.4.295
  16. G. R. Marshall, Computer-aided drug design, Annu. Rev. Pharmacol. Toxicol., 27, 193 (1987). https://doi.org/10.1146/annurev.pa.27.040187.001205
  17. I. D. Kuntz, Structure-based strategies for drug design and discovery, Science, 257(5073), 1078 (1992). https://doi.org/10.1126/science.257.5073.1078
  18. P. J. Gane, and P. M. Dean, Recent advances in structure-based rational drug design, Curr. Opin. Struct. Biol., 10(4), 401 (2000). https://doi.org/10.1016/S0959-440X(00)00105-6
  19. A. C. Anderson, The process of structure-based drug design, Chem. Biol., 10(9), 787 (2003). https://doi.org/10.1016/j.chembiol.2003.09.002
  20. R. V. Guido, G. Oliva, and A. D. Andricopulo, Virtual screening and its integration with modern drug design technologies, Curr. Med. Chem., 15(1), 37 (2008). https://doi.org/10.2174/092986708783330683
  21. S. J Kim, S. G Kim, and N. D. Sung, CoMFA Analysis on inhibitory effect of $3{\beta}$-hydroxy-12- oleanen-28-oic acid analogues on PTP- 1B activity and prediction of active compounds, J. Soc. Cosmet. Scientists Korea, 34(2), 109 (2008).
  22. S. J. Kim, Y. H. Chung, S. G Kim, and N. D Sung, CoMSIA analysis on the inhibition activity of PTP-IB with $3{\beta}$-hydroxy-12-oleanen- 28-oic acid analogues, J. Korean Soc. Appl. Biol. Chem., 51(3), 171 (2008).
  23. S. J. Kim, N. D. Sung, and H. S Jung, Holographic quantitative structure-toxicity relationships on the skin sensitization of alkyl-3,4-dihydroxybenzoate and N-alkyl-3,4-dihydroxybenzamide derivatives, J. Soc. Cosmet. Scientists Korea, 31(1), 91 (2005).
  24. S. J Kim, Y. O. Kim, Y. K. Cho, W. S. Choi, and N. D. Sung, HQSAR analyses on the tyrosinase inhibitory activity of phenyl-2,2'- methylenebis(cyclohexane-1,3-dione) analogues, J. Soc. Cosmet. Scientists Korea, 36(3), 199 (2010).
  25. S. J. Kim, W. S. Choi, and N. D. Sung, Molecular docking and 3D-QSAR analysis on the tyrosinase inhibitory activity of tetraketone analogues, J. Kor. Soc. Cosm., 17(4), 759 (2010).
  26. K. M. Khan, G. M. Maharvi, M. T. Khan, A. J. Shaikh, S. Perveen, S. Begum, and M. I. Choudhary, Tetraketones: A new class of tyrosinase inhibitors, Bioorg. Med. Chem., 14(2), 344 (2006). https://doi.org/10.1016/j.bmc.2005.08.029
  27. W. S. Choi, Master's Thesis Dissertation, Chungnam National University, Daejeon, Korea (2011).
  28. A. Z. Dudek, T. Arodzb, and J. Galvezc, Computational methods in developing quantitative structure-activity relationships (QSAR): A review, Comb. Chem. High Throughput Screen, 9(3), 213 (2006). https://doi.org/10.2174/138620706776055539
  29. T. Ghafourian, E. G. Samaras, J. D. Brooks, and J. E. Riviere, Validated models for predicting skin penetration from different vehicles, Eur. J. Pharm. Sci., 41(5), 612 (2010). https://doi.org/10.1016/j.ejps.2010.08.014
  30. C. Yamagami, K. Araki, K. Ohnishi, K. Hanasato, H. Inaba, M. Aono, and A. Ohta, Measurement and prediction of hydrophobicity parameters for highly lipophilic compounds: application of the HPLC column-switching technique to measurement of log P of diarylpyrazines, J. Pharm. Sci., 88(12), 1299 (1999). https://doi.org/10.1021/js990112s
  31. G. E. Kellogg and D. J. Abraham, Hydrophobicity: is LogP (o/w) more than the sum of its parts?, Eur. J. Med. Chem., 35(7-8), 651 (2000). https://doi.org/10.1016/S0223-5234(00)00167-7