DOI QR코드

DOI QR Code

Virulence of Entomopathogenic Fungi Metarhizium anisopliae and Paecilomyces fumosoroseus for the Microbial Control of Spodoptera exigua

  • Han, Ji Hee (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Jin, Byung Rae (College of Natural Resources and Life Science, Dong-A University) ;
  • Kim, Jeong Jun (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Sang Yeob (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
  • Received : 2014.11.13
  • Accepted : 2014.12.08
  • Published : 2014.12.31

Abstract

The beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) is difficult to control using chemical insecticides because of the development of insecticide resistance. Several pest control agents are used to control the beet armyworm. Entomopathogenic fungi are one of the candidates for eco-friendly pest control instead of chemical control agents. In this study, among various entomopathogenic fungal strains isolated from soil two isolates were selected as high virulence pathogens against larva of beet armyworm. Control efficacy of fungal conidia was influenced by conidia concentration, temperature, and relative humidity (RH). The isolates Metarhizium anisopliae FT83 showed 100% cumulative mortality against second instar larvae of S. exigua 3 days after treatment at $1{\times}10^7$ conidia/mL and Paecilomyces fumosoroseus FG340 caused 100% mortality 6 days after treatment at $1{\times}10^4$ conidia/mL. Both M. anisopliae FT83 and P. fumosoroseus FG340 effectively controlled the moth at $20{\sim}30^{\circ}C$. M. anisopliae FT83 was significantly affected mortality by RH: mortality was 86.7% at 85% RH and 13.4% at 45% RH. P. fumosoroseus FG340 showed high mortality as 90% at 45% RH and 100% at 75% RH 6 days after conidia treatments. These results suggest that P. fumosoroseus FG340 and M. anisopliae FT83 have high potential to develop as a biocontrol agent against the beet armyworm.

Keywords

References

  1. Metcalf CL, Flint WP. Destructive and useful insects: their habits and control. 4th ed. San Francisco: McGrawhill; 1962.
  2. Capinera J. Beet armyworm, Spodoptera exigua (Hubner) (Insecta: Lepidoptera: Noctuidae). Publication No. EENY-105 [Internet]. Gainesville: IFAS Extension, University of Florida; 2006 [cited 2014 Nov 1]. Available from: http://edis.ifas.ufl.edu/ in262.
  3. Kang EJ, Kang MG, Seo MJ, Park SN, Kim CU, Yu YM, Youn YN. Toxicological effects of some insecticides against Welsh onion beet armyworm (Spodoptera exigua). Korean J Appl Entomol 2008;47:155-62. https://doi.org/10.5656/KSAE.2008.47.2.155
  4. Yoshida HA, Parrella MP. Chrysanthemum cultivar preferences exhibited by Spodoptera exigua (Lepidoptera : Noctuidae). Environ Entomol 1991;20:160-5. https://doi.org/10.1093/ee/20.1.160
  5. Moulton JK, Pepper DA, Dennehy TJ. Studies of resistance of beet armyworm (Spodoptera exigua) to spinosad in field populations from the southern USA and southeast Asia [Internet]. Arizona: University of Arizona College of Agriculture 1999 Vegetable Report; 1999 [cited 2014 Nov 1]. Available from: http://extension.arizona.edu/sites/extension.arizona.edu/files/ pubs/az1143_21.pdf.
  6. Meinke LJ, Ware GW. Tolerance of three beet armyworm strains in Arizona to methomyl. J Econ Entomol 1978;71:645-6. https://doi.org/10.1093/jee/71.4.645
  7. Chaufaux J, Ferron P. Different susceptibility of two populations of Spodoptera exigua Hub. (Lepid., Noctuidae) to baculoviruses and pyrethroid insecticides. Agronomie 1986;6:99-104. https://doi.org/10.1051/agro:19860109
  8. Delorme R, Fournier D, Chaufaux J, Cuany A, Bride JM, Auge D, Berge JB. Esterase metabolism and reduced penetration are causes of resistance to deltamethrin in Spodoptera exigua HUB (Noctuidea: Lepidoptera). Pestic Biochem Physiol 1988; 32:240-6. https://doi.org/10.1016/0048-3575(88)90107-1
  9. Brewer MJ, Trumble JT. Beet armyworm resistance to fenvalerate and methomyl: resistance variation and insecticide synergism. J Agric Entomol 1994;11:291-300.
  10. Laecke VK, Degheele D. Synergism of diflubenzuron and teflubenzuron in larvae of beet armyworm (Lepidoptera: Noctuidae). J Econ Entomol 1991;84:785-9. https://doi.org/10.1093/jee/84.3.785
  11. Layton MB. The 1993 beet armyworm outbreak in Mississippi a future management guidelines. In: Proceedings of Beltwide Cotton Conference; 1993 Jan 13-14; New Orleans, LA, USA. Memphis: National Cotton Council; 1994. p. 854-6.
  12. Kondo A, Yamanoto M, Takashi S, Maeda S. Isolation and characterization of nuclear polyhedrosis viruses from the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) found in Shiga, Japan. Appl Entomol Zool 1994;29:105-11.
  13. Caballero P, Zuidema D, Santiago-Alvarez C, Vlak JM. Biochemical and biological characterization of four isolates of Spodoptera exigua nuclear polyhedrosis virus. Biocontrol Sci Technol 1992;2:145-57. https://doi.org/10.1080/09583159209355228
  14. Moar WJ, Pusztai-Carey M, Faassen HV, Bosch D, Frutos R, Rang C, Luo K, Adang MJ. Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Appl Environ Microbiol 1995;61:2086-92.
  15. Inglis GD, Goettel MS, Butt TM, Strasser H. Use of hyphomycetous fungi for managing insect pests. In: Butt TM, Jackson C, Magan N, editors. Fungi as biocontrol agents: progress, problems and potential. Wallingford: CABI International/AAFC; 2001. p. 23-69.
  16. Roberts DW, Humber RA. Entomogenous fungi. In: Cole GT, Kendrick B, editors. Biology of conidial fungi. New York: Academic Press; 1981. p. 201-36.
  17. de Faria MR, Wraight SP. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 2007;43:237-56. https://doi.org/10.1016/j.biocontrol.2007.08.001
  18. Lin HF, Yang XJ, Gao YB, Li SG. Pathogenicity of several fungal species on Spodoptera litura. J Appl Ecol 2007;18:937-40.
  19. Asi MR, Bashir MH, Afzal M, Zia K, Akram M. Potential of entomopathogenic fungi for biocontrol of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). J Anim Plant Sci 2013;23: 913-8.
  20. Freed S, Saleem, MA, Khan MB, Naeem M. Prevalence and effectiveness of Metarhizium anisopliae against Spodoptera exigua (Lepidoptera: Noctuidae) in southern Punjab, Pakistan. Pak J Zool 2012;44:753-8.
  21. Han JH, Kim H, Leem HT, Kim JJ, Lee SY. Characteristics and virulence assay of entomopathogenic fungus Metarhizium anisopliae for the microbial control of Spodoptera exigua. Korean J Pestic Sci 2013;17:454-9. https://doi.org/10.7585/kjps.2013.17.4.454
  22. Goettel MS, Inglis GD. Laboratoy techniques used for entomopathogenic fungi: Hypocreales. In: Lacey LA, editor. Manual of techniques in invertebrate pathology. 2nd ed. Oxford: Academic Publisher; 2012. p. 189-253.
  23. Zimmermann G. The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Sci Technol 2008;18:865-901. https://doi.org/10.1080/09583150802471812
  24. Bernardini M, Carilli A, Pacioni G, Santurbano B. Isolation of beauvericin from Paecilomyces fumoso-roseus. Phytochemistry 1975;14:1865.
  25. Jegorov A, Sedmera P, Matha V, Simek P, Zahradnickova H, Landa Z, Eyal J. Beauverolides L and La from Beauveria tenella and Paecilomyces fumosoroseus. Phytochemistry 1994; 37:1301-3. https://doi.org/10.1016/S0031-9422(00)90402-3
  26. Shima M. On the metabolic products of the silkworm muscardines. Bull Sericult Exp Stn 1955;14:427-49.
  27. Grove JF, Pople M. The insecticidal activity of beauvericin and the enniatin complex. Mycopathologia 1980;70:103-5. https://doi.org/10.1007/BF00443075
  28. Claydon N, Grove JF. Insecticidal secondary metabolic products from the entomogenous fungus Verticillium lecanii. J Invertebr Pathol 1982;40:413-8. https://doi.org/10.1016/0022-2011(82)90180-X
  29. Asaff A, Cerda-Garcia-Rojas C, de la Torre M. Isolation of dipicolinic acid as an insecticidal toxin from Paecilomyces fumosoroseus. Appl Microbiol Biotechnol 2005;68:542-7. https://doi.org/10.1007/s00253-005-1909-2
  30. Freed S, Feng-Liang J, Naeem M, Shun-Xiang R, Hussian M. Toxicity of proteins secreted by entomopathogenic fungi against Plutella xylostella (Lpidoptera: Plutellidae). Int J Agric Biol 2012;14:291-5.
  31. Kim JJ, Kim KC. Selection of a highly virulent isolate of Lecanicillium attenuatum against cotton aphid. J Asia-Pac Entomol 2008;11:1-4. https://doi.org/10.1016/j.aspen.2008.02.001