DOI QR코드

DOI QR Code

Genome-Wide Identification and Characterization of Novel Laccase Genes in the White-Rot Fungus Flammulina velutipes

  • Kim, Hong-Il (Department of Biomedical Chemistry, Konkuk University) ;
  • Kwon, O-Chul (Department of Biomedical Chemistry, Konkuk University) ;
  • Kong, Won-Sik (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Lee, Chang-Soo (Department of Biomedical Chemistry, Konkuk University) ;
  • Park, Young-Jin (Department of Biomedical Chemistry, Konkuk University)
  • Received : 2014.10.02
  • Accepted : 2014.11.13
  • Published : 2014.12.31

Abstract

The aim of this study was to identify and characterize new Flammulina velutipes laccases from its whole-genome sequence. Of the 15 putative laccase genes detected in the F. velutipes genome, four new laccase genes (fvLac-1, fvLac-2, fvLac3, and fvLac-4) were found to contain four complete copper-binding regions (ten histidine residues and one cysteine residue) and four cysteine residues involved in forming disulfide bridges, fvLac-1, fvLac-2, fvLac3, and fvLac-4, encoding proteins consisting of 516, 518, 515, and 533 amino acid residues, respectively. Potential N-glycosylation sites (Asn-Xaa-Ser/Thr) were identified in the cDNA sequence of fvLac-1 (Asn-454), fvLac-2 (Asn-437 and Asn-455), fvLac-3 (Asn-111 and Asn-237), and fvLac4 (Asn-402 and Asn-457). In addition, the first 19~20 amino acid residues of these proteins were predicted to comprise signal peptides. Laccase activity assays and reverse transcription polymerase chain reaction analyses clearly reveal that $CuSO_4$ affects the induction and the transcription level of these laccase genes.

Keywords

References

  1. Gianfreda L, Xu F, Bollag JM. Laccases: a useful group of oxidoreductive enzymes. Bioremed J 1999;3:1-26. https://doi.org/10.1080/10889869991219163
  2. Mayer AM. Polyphenol oxidases in plants: recent progress. Phytochemistry 1986;26:11-20. https://doi.org/10.1016/S0031-9422(00)81472-7
  3. Hatakka A. Lignin-modifying enzymes from selected whiterot fungi: production and role in lignin degradation. FEMS Microbiol Rev 1994;13:125-35. https://doi.org/10.1111/j.1574-6976.1994.tb00039.x
  4. Baldrian P. Fungal laccases: occurrence and properties. FEMS Microbiol Rev 2006;30:215-42. https://doi.org/10.1111/j.1574-4976.2005.00010.x
  5. Vyas BR, Bakowski S, Šašek V, Matucha M. Degradation of anthracene by selected white rot fungi. FEMS Microbiol Ecol 1994;14:65-70. https://doi.org/10.1111/j.1574-6941.1994.tb00091.x
  6. Mayer AM, Staples RC. Laccase: new functions for an old enzyme. Phytochemistry 2002;60:551-65. https://doi.org/10.1016/S0031-9422(02)00171-1
  7. Asgher M, Shah SA, Ali M, Legge RL. Decolorization of some reactive textile dyes by white rot fungi isolated in Pakistan. World J Microbiol Biotechnol 2006;22:89-93. https://doi.org/10.1007/s11274-005-5743-6
  8. Faraco V, Pezzella C, Miele A, Giardina P, Sannia G. Bioremediation of colored industrial wastewaters by the whiterot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes. Biodegradation 2009;20:209-20. https://doi.org/10.1007/s10532-008-9214-2
  9. Matheny PB, Curtis JM, Hofstetter V, Aime MC, Moncalvo JM., Ge ZW, Slot JC, Ammirati JF, Baroni TJ, Bougher NL, et al. Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 2006;98:982-95. https://doi.org/10.3852/mycologia.98.6.982
  10. Psurtseva NV. Modern taxonomy and medicinal value of the Flammulina mushrooms. Int J Med Mushrooms 2006;7:449-51.
  11. Park YJ, Baek JH, Lee S, Kim C, Rhee H, Kim H, Seo JS, Park HR, Yoon DE, Nam JY, et al. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation. PLos One 2014;9:e93560. https://doi.org/10.1371/journal.pone.0093560
  12. Soden DM, Dobson AD. Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology 2001; 147(Pt 7):1755-63.
  13. Thurston CF. The structure and function of fungal laccases. Microbiology 1994;140:19-26. https://doi.org/10.1099/13500872-140-1-19
  14. Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 2005;33:W465-7. https://doi.org/10.1093/nar/gki458
  15. Tlecuitl-Beristain S, Sanchez C, Loera O, Robson GD, Diaz- Godinez G. Laccases of Pleurotus ostreatus observed at different phases of its growth in submerged fermentation: production of a novel laccase isoform. Mycol Res 2008;112; 1080-4. https://doi.org/10.1016/j.mycres.2008.03.001
  16. Dittmer JK, Patel NJ, Dhawale SW, Dhawale SS. Production of multiple laccase isoforms by Phanerochaete chrysosporium grown under nutrient sufficiency. FEMS Microbiol Lett 1997; 149:65-70. https://doi.org/10.1111/j.1574-6968.1997.tb10309.x
  17. Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 2002;41:7325-33. https://doi.org/10.1021/bi0201318
  18. Bento I, Carrondo MA, Lindley PF. Reduction of dioxygen by enzymes containing copper. J Biol Inorg Chem 2006;11;539-47. https://doi.org/10.1007/s00775-006-0114-9
  19. von Heijine G. Signal sequences: the limits of variation. J Mol Biol 1985;184:99-105. https://doi.org/10.1016/0022-2836(85)90046-4
  20. Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 2000;66: 920-4. https://doi.org/10.1128/AEM.66.3.920-924.2000
  21. Collins PJ, Dobson A. Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol 1997;63:3444-50.
  22. Fernandez-Larrea J, Stahl U. Isolation and characterization of a laccase gene from Podospora anserina. Mol Gen Genet 1996;252:539-51.
  23. Pezzella C, Autore F, Giardina P, Piscitelli A, Sannia G, Faraco V. The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members. Curr Genet 2009;55:45-57. https://doi.org/10.1007/s00294-008-0221-y
  24. Galhaup C, Goller S, Peterbauer CK, Strauss J, Haltrich D. Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 2002;148(Pt 7):2159-69.
  25. Baneyx E. Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 1999;10:411-21. https://doi.org/10.1016/S0958-1669(99)00003-8
  26. Piscitelli A, Pezzella C, Giardina P, Faraco V, Giovanni S. Heterologous laccase production and its role in industrial applications. Bioeng Bugs 2010;1:252-62.