References
- Brown SC, Boyko V, Meyers G, Voetz M, Wohlleben W. Toward advancing nano-object count metrology: a best practice framework. Environ Health Perspect 2013;121(11-12):1282-1291.
- Lazareva A, Keller AA. Estimating potential life cycle releases of engineered nanomaterials from wastewater treatment plants. ACS Sustain Chem Eng 2014;2 (7):1656-1665. https://doi.org/10.1021/sc500121w
- Keller AA, Lazareva A. Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 2014; 1(1):65-70. https://doi.org/10.1021/ez400106t
- Future Markets Inc. The global market for nanomaterials 2002-2016: production volumes, revenues and end user market demand. Edinburgh: Future Markets Inc.; 2012, p, 1-20.
- Korea Chemicals Management Association. Development of guidance for investigation of usage amount of nanomaterials in Korea. Seoul: Korea Chemicals Management Association; 2011, 58-78 (Korean).
- Batley GE, Kirby JK, McLaughlin MJ. Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 2013; 46 (3):854-862. https://doi.org/10.1021/ar2003368
- Muller N. Nanoparticles in the environment : risk assessment based on exposure-modelling: what concentrations of nano titanium dioxide, carbon nanotubes and nano silver are we exposed to? [dissertation]. Zurich: Eidgenossische Technische Hochschule Zurich; 2007.
- Gottschalk F, Sun T, Nowack B. Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 2013;181:287-300. https://doi.org/10.1016/j.envpol.2013.06.003
- Boxall A, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, et al. Current and future predicted environmental exposure to engineered nanoparticles. London: Central Science Laboratory; 2007, 37-68.
- Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 2008;42(12):4447-4453. https://doi.org/10.1021/es7029637
- Gottschalk F, Sonderer T, Scholz RW, Nowack B. Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 2009;43(24):9216-9222. https://doi.org/10.1021/es9015553
- National Institute of Environmental Research. Assessment of environmental exposure of nanomaterials in aqueous phase. Incheon: National Institute of Environmental Research; 2013, p. 271-282 (Korean).
- Project on Emerging Nanotechnologies. Consumer products inventory: an inventory of nanotechnology-based consumer products introduced on the market [cited 2014 Sep 27]. Available from: http://www.nanotechproject.org/cpi/.
- von Goetz N, Lorenz C, Windler L, Nowack B, Heuberger M, Hungerbuhler K. Migration of Ag-and TiO2-(Nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling. Environ Sci Technol 2013;47(17):9979-9987. https://doi.org/10.1021/es304329w
- Gondikas AP, von der Kammer F, Reed RB, Wagner S, Ranville JF, Hofmann T. Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational Lake. Environ Sci Technol 2014;48(10):5415-5422. https://doi.org/10.1021/es405596y
- Li L, Hartmann G, Doblinger M, Schuster M. Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany. Environ Sci Technol 2013;47(13): 7317-7323.
- Liu J, Pennell KG, Hurt RH. Kinetics and mechanisms of nanosilver oxysulfidation. Environ Sci Technol 2011;45(17):7345-7353. https://doi.org/10.1021/es201539s
- Yang Y, Zhang C, Hu Z. Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ Sci Process Impacts 2013;15(1):39-48. https://doi.org/10.1039/C2EM30655G
- Kiser MA, Westerhoff P, Benn T, Wang Y, Perez-Rivera J, Hristovski K. Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 2009;43(17):6757-6763. https://doi.org/10.1021/es901102n
- Limbach LK, Bereiter R, Muller E, Krebs R, Galli R, Stark WJ. Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 2008;42(15):5828-5833. https://doi.org/10.1021/es800091f
- Jarvie HP, Al-Obaidi H, King SM, Bowes MJ, Lawrence MJ, Drake AF, et al. Fate of silica nanoparticles in simulated primary wastewater treatment. Environ Sci Technol 2009;43(22):8622-8628. https://doi.org/10.1021/es901399q
- Hou L, Li K, Ding Y, Li Y, Chen J, Wu X, et al. Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH(4) reduction. Chemosphere 2012;87(3): 248-252. https://doi.org/10.1016/j.chemosphere.2011.12.042
- Walser T, Limbach LK, Brogioli R, Erismann E, Flamigni L, Hattendorf B, et al. Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nat Nanotechnol 2012;7(8): 520-524. https://doi.org/10.1038/nnano.2012.64
- Cheng H, Hu Y. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China. Bioresour Technol 2010;101(11):3816-3824. https://doi.org/10.1016/j.biortech.2010.01.040
- Vejerano EP, Holder AL, Marr LC. Emissions of polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins, and dibenzofurans from incineration of nanomaterials. Environ Sci Technol 2013;47(9):4866-4874. https://doi.org/10.1021/es304895z
- Mueller NC, Buha J, Wang J, Ulrich A, Nowack B. Modeling the flows of engineered nanomaterials during waste handling. Environ Sci Process Impacts 2013;15(1):251-259. https://doi.org/10.1039/C2EM30761H
- Yang Y, Gajaraj S, Wall JD, Hu Z. A comparison of nanosilver and silver ion effects on bioreactor landfill operations and methanogenic population dynamics. Water Res 2013;47(10):3422-3430. https://doi.org/10.1016/j.watres.2013.03.040
- Bolyard SC, Reinhart DR, Santra S. Behavior of engineered nanoparticles in landfill leachate. Environ Sci Technol 2013;47(15):8114-8122.
Cited by
- 나노폐기물의 소각 처리 vol.22, pp.1, 2014, https://doi.org/10.7464/ksct.2016.22.1.001
- Nanomaterials in the environment vol.22, pp.None, 2017, https://doi.org/10.1051/e3sconf/20172200119
- Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties vol.10, pp.1, 2020, https://doi.org/10.3390/nano10010124
- The Physical Modeling Analysis of Fate and Transport of Silver Nanoparticles Dispersed by Water Flow vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/6889490