DOI QR코드

DOI QR Code

Simultaneous Inhibition of CXCR4 and VLA-4 Exhibits Combinatorial Effect in Overcoming Stroma-Mediated Chemotherapy Resistance in Mantle Cell Lymphoma Cells

  • Kim, Yu-Ri (Cancer Research Institute in the Catholic University of Korea) ;
  • Eom, Ki-Seong (Cancer Research Institute in the Catholic University of Korea)
  • 투고 : 2014.09.20
  • 심사 : 2014.11.10
  • 발행 : 2014.12.31

초록

There is growing evidence that crosstalk between mantle cell lymphoma (MCL) cells and stromal microenvironments, such as bone marrow and secondary lymphoid tissues, promotes tumor progression by enhancing survival and growth as well as drug resistance of MCL cells. Recent advances in the understanding of lymphoma microenvironment have led to the identification of crucial factors involved in the crosstalk and subsequent generation of their targeted agents. In the present study, we evaluated the combinatory effect of blocking antibodies (Ab) targeting CXCR4 and VLA-4, both of which were known to play significant roles in the induction of environment-mediated drug resistance (EMDR) in MCL cell line, Jeko-1. Simultaneous treatment with anti-CXCR4 and anti-VLA-4 Ab not only reduced the migration of Jeko-1 cells into the protective stromal cells, but also enhanced sensitivity of Jeko-1 to a chemotherapeutic agent to a greater degree than with either Ab alone. These combinatorial effects were associated with decreased phosphorylation of ERK1/2, AKT and NF-${\kappa}B$. Importantly, drug resistance could not be overcome once the adhesion of Jeko-1 to the stromal occurred despite the combined use of Abs, suggesting that the efforts to mitigate migration of MCLs should be attempted as much as possible. Our results provide a basis for a future development of therapeutic strategies targeting both CXCR4 and VLA-4, such as Ab combinations or bispecific antibodies, to improve treatment outcomes of MCL with grave prognosis.

키워드

참고문헌

  1. The Non-Hodgkin's Lymphoma Classification Project. 1997. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. Blood 89: 3909-3918.
  2. Matsunaga, T., N. Takemoto, T. Sato, R. Takimoto, I. Tanaka, A. Fujimi, T. Akiyama, H. Kuroda, Y. Kawano, M. Kobune, J. Kato, Y. Hirayama, S. Sakamaki, K. Kohda, K. Miyake, and Y. Niitsu. 2003. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat. Med. 9: 1158-1165. https://doi.org/10.1038/nm909
  3. Kurtova, A. V., A. T. Tamayo, R. J. Ford, and J. A. Burger. 2009. Mantle cell lymphoma cells express high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the stromal microenvironment and specific targeting. Blood 113: 4604-4613. https://doi.org/10.1182/blood-2008-10-185827
  4. Lwin, T., L. A. Hazlehurst, S. Dessureault, R. Lai, W. Bai, E. Sotomayor, L. C. Moscinski, W. S. Dalton, and J. Tao. 2007. Cell adhesion induces p27Kip1-associated cell-cycle arrest through down-regulation of the SCFSkp2 ubiquitin ligase pathway in mantle-cell and other non-Hodgkin B-cell lymphomas. Blood 110: 1631-1638. https://doi.org/10.1182/blood-2006-11-060350
  5. Mohle, R., C. Failenschmid, F. Bautz, and L. Kanz. 1999. Overexpression of the chemokine receptor CXCR4 in B cell chronic lymphocytic leukemia is associated with increased functional response to stromal cell-derived factor-1 (SDF-1). Leukemia 13: 1954-1959. https://doi.org/10.1038/sj.leu.2401602
  6. Bradstock, K. F., V. Makrynikola, A. Bianchi, W. Shen, J. Hewson, and D. J. Gottlieb. 2000. Effects of the chemokine stromal cell-derived factor-1 on the migration and localization of precursor-B acute lymphoblastic leukemia cells within bone marrow stromal layers. Leukemia 14: 882-888. https://doi.org/10.1038/sj.leu.2401729
  7. Dialynas, D. P., L. Shao, G. F. Billman, and J. Yu. 2001. Engraftment of human T-cell acute lymphoblastic leukemia in immunodeficient NOD/SCID mice which have been preconditioned by injection of human cord blood. Stem Cells 19: 443-452. https://doi.org/10.1634/stemcells.19-5-443
  8. Hideshima, T., and K. C. Anderson. 2002. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat. Rev. Cancer 2: 927-937. https://doi.org/10.1038/nrc952
  9. Tavor, S., I. Petit, S. Porozov, A. Avigdor, A. Dar, L. Leider-Trejo, N. Shemtov, V. Deutsch, E. Naparstek, A. Nagler, and T. Lapidot. 2004. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res. 64: 2817-2824. https://doi.org/10.1158/0008-5472.CAN-03-3693
  10. Beider, K., E. Ribakovsky, M. Abraham, H. Wald, L. Weiss, E. Rosenberg, E. Galun, A. Avigdor, O. Eizenberg, A. Peled, and A. Nagler. 2013. Targeting the CD20 and CXCR4 pathways in non-hodgkin lymphoma with rituximab and high-affinity CXCR4 antagonist BKT140. Clin. Cancer Res. 19: 3495-3507. https://doi.org/10.1158/1078-0432.CCR-12-3015
  11. Lavrovsky, Y., Y. A. Ivanenkov, K. V. Balakin, D. A. Medvedeva, and A. V. Ivachtchenko. 2008. CXCR4 receptor as a promising target for oncolytic drugs. Mini Rev. Med. Chem. 8: 1075-1087. https://doi.org/10.2174/138955708785909907
  12. Burger, J. A., and A. Peled. 2009. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 23: 43-52. https://doi.org/10.1038/leu.2008.299
  13. Shishido, S., H. Bonig, and Y. M. Kim. 2014. Role of integrin alpha4 in drug resistance of leukemia. Front. Oncol. 4: 99.
  14. Podar, K., Y. T. Tai, B. K. Lin, R. P. Narsimhan, M. Sattler, T. Kijima, R. Salgia, D. Gupta, D. Chauhan, and K. C. Anderson. 2002. Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKC alpha activation. J. Biol. Chem. 277: 7875-7881. https://doi.org/10.1074/jbc.M109068200
  15. Peled, A., O. Kollet, T. Ponomaryov, I. Petit, S. Franitza, V. Grabovsky, M. M. Slav, A. Nagler, O. Lider, R. Alon, D. Zipori, and T. Lapidot. 2000. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95: 3289-3296.
  16. Ding, Z., T. B. Issekutz, G. P. Downey, and T. K. Waddell. 2003. L-selectin stimulation enhances functional expression of surface CXCR4 in lymphocytes: implications for cellular activation during adhesion and migration. Blood 101: 4245-4252. https://doi.org/10.1182/blood-2002-06-1782
  17. Ngo, H. T., X. Leleu, J. Lee, X. Jia, M. Melhem, J. Runnels, A. S. Moreau, N. Burwick, A. K. Azab, A. Roccaro, F. Azab, A. Sacco, M. Farag, R. Sackstein, and I. M. Ghobrial. 2008. SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood 112: 150-158. https://doi.org/10.1182/blood-2007-12-129395
  18. Meads, M. B., L. A. Hazlehurst, and W. S. Dalton. 2008. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin. Cancer Res. 14: 2519-2526. https://doi.org/10.1158/1078-0432.CCR-07-2223
  19. Damiano, J. S., A. E. Cress, L. A. Hazlehurst, A. A. Shtil, and W. S. Dalton. 1999. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93: 1658-1667.
  20. Zeng, Z., Y. X. Shi, I. J. Samudio, R. Y. Wang, X. Ling, O. Frolova, M. Levis, J. B. Rubin, R. R. Negrin, E. H. Estey, S. Konoplev, M. Andreeff, and M. Konopleva. 2009. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 113: 6215-6224. https://doi.org/10.1182/blood-2008-05-158311
  21. Rizzatti, E. G., R. P. Falcao, R. A. Panepucci, R. Proto-Siqueira, W. T. Anselmo-Lima, O. K. Okamoto, and M. A. Zago. 2005. Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the PI3K-AKT, WNT and TGFbeta signalling pathways. Br. J. Haematol. 130: 516-526. https://doi.org/10.1111/j.1365-2141.2005.05630.x
  22. Perez-Galan, P., H. Mora-Jensen, M. A. Weniger, A. L. Shaffer, 3rd, E. G. Rizzatti, C. M. Chapman, C. C. Mo, L. S. Stennett, C. Rader, P. Liu, N. Raghavachari, M. Stetler-Stevenson, C. Yuan, S. Pittaluga, I. Maric, K. M. Dunleavy, W. H. Wilson, L. M. Staudt, and A. Wiestner. 2011. Bortezomib resistance in mantle cell lymphoma is associated with plasmacytic differentiation. Blood 117: 542-552. https://doi.org/10.1182/blood-2010-02-269514
  23. Bleul, C. C., R. C. Fuhlbrigge, J. M. Casasnovas, A. Aiuti, and T. A. Springer. 1996. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 184: 1101-1109. https://doi.org/10.1084/jem.184.3.1101
  24. Nagasawa, T., H. Kikutani, and T. Kishimoto. 1994. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc. Natl. Acad. Sci. U. S. A. 91: 2305-2309. https://doi.org/10.1073/pnas.91.6.2305
  25. Felsher, D. W., and J. M. Bishop. 1999. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4: 199-207. https://doi.org/10.1016/S1097-2765(00)80367-6

피인용 문헌

  1. SOX11 promotes tumor protective microenvironment interactions through CXCR4 and FAK regulation in mantle cell lymphoma vol.130, pp.4, 2014, https://doi.org/10.1182/blood-2017-04-776740
  2. Rationale for targeting tumor cells in their microenvironment for mantle cell lymphoma treatment vol.59, pp.5, 2014, https://doi.org/10.1080/10428194.2017.1357177
  3. Clinical significance of chemokine receptor CXCR4 and mammalian target of rapamycin (mTOR) expression in patients with diffuse large B-cell lymphoma vol.59, pp.6, 2018, https://doi.org/10.1080/10428194.2017.1379077
  4. p110α Inhibition Overcomes Stromal Cell–Mediated Ibrutinib Resistance in Mantle Cell Lymphoma vol.17, pp.5, 2014, https://doi.org/10.1158/1535-7163.mct-17-0784
  5. C-X-C Chemokine Receptor 4 in Diffuse Large B Cell Lymphoma: Achievements and Challenges vol.142, pp.2, 2014, https://doi.org/10.1159/000497430