References
- The Non-Hodgkin's Lymphoma Classification Project. 1997. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. Blood 89: 3909-3918.
- Matsunaga, T., N. Takemoto, T. Sato, R. Takimoto, I. Tanaka, A. Fujimi, T. Akiyama, H. Kuroda, Y. Kawano, M. Kobune, J. Kato, Y. Hirayama, S. Sakamaki, K. Kohda, K. Miyake, and Y. Niitsu. 2003. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat. Med. 9: 1158-1165. https://doi.org/10.1038/nm909
- Kurtova, A. V., A. T. Tamayo, R. J. Ford, and J. A. Burger. 2009. Mantle cell lymphoma cells express high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the stromal microenvironment and specific targeting. Blood 113: 4604-4613. https://doi.org/10.1182/blood-2008-10-185827
- Lwin, T., L. A. Hazlehurst, S. Dessureault, R. Lai, W. Bai, E. Sotomayor, L. C. Moscinski, W. S. Dalton, and J. Tao. 2007. Cell adhesion induces p27Kip1-associated cell-cycle arrest through down-regulation of the SCFSkp2 ubiquitin ligase pathway in mantle-cell and other non-Hodgkin B-cell lymphomas. Blood 110: 1631-1638. https://doi.org/10.1182/blood-2006-11-060350
- Mohle, R., C. Failenschmid, F. Bautz, and L. Kanz. 1999. Overexpression of the chemokine receptor CXCR4 in B cell chronic lymphocytic leukemia is associated with increased functional response to stromal cell-derived factor-1 (SDF-1). Leukemia 13: 1954-1959. https://doi.org/10.1038/sj.leu.2401602
- Bradstock, K. F., V. Makrynikola, A. Bianchi, W. Shen, J. Hewson, and D. J. Gottlieb. 2000. Effects of the chemokine stromal cell-derived factor-1 on the migration and localization of precursor-B acute lymphoblastic leukemia cells within bone marrow stromal layers. Leukemia 14: 882-888. https://doi.org/10.1038/sj.leu.2401729
- Dialynas, D. P., L. Shao, G. F. Billman, and J. Yu. 2001. Engraftment of human T-cell acute lymphoblastic leukemia in immunodeficient NOD/SCID mice which have been preconditioned by injection of human cord blood. Stem Cells 19: 443-452. https://doi.org/10.1634/stemcells.19-5-443
- Hideshima, T., and K. C. Anderson. 2002. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat. Rev. Cancer 2: 927-937. https://doi.org/10.1038/nrc952
- Tavor, S., I. Petit, S. Porozov, A. Avigdor, A. Dar, L. Leider-Trejo, N. Shemtov, V. Deutsch, E. Naparstek, A. Nagler, and T. Lapidot. 2004. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res. 64: 2817-2824. https://doi.org/10.1158/0008-5472.CAN-03-3693
- Beider, K., E. Ribakovsky, M. Abraham, H. Wald, L. Weiss, E. Rosenberg, E. Galun, A. Avigdor, O. Eizenberg, A. Peled, and A. Nagler. 2013. Targeting the CD20 and CXCR4 pathways in non-hodgkin lymphoma with rituximab and high-affinity CXCR4 antagonist BKT140. Clin. Cancer Res. 19: 3495-3507. https://doi.org/10.1158/1078-0432.CCR-12-3015
- Lavrovsky, Y., Y. A. Ivanenkov, K. V. Balakin, D. A. Medvedeva, and A. V. Ivachtchenko. 2008. CXCR4 receptor as a promising target for oncolytic drugs. Mini Rev. Med. Chem. 8: 1075-1087. https://doi.org/10.2174/138955708785909907
- Burger, J. A., and A. Peled. 2009. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 23: 43-52. https://doi.org/10.1038/leu.2008.299
- Shishido, S., H. Bonig, and Y. M. Kim. 2014. Role of integrin alpha4 in drug resistance of leukemia. Front. Oncol. 4: 99.
- Podar, K., Y. T. Tai, B. K. Lin, R. P. Narsimhan, M. Sattler, T. Kijima, R. Salgia, D. Gupta, D. Chauhan, and K. C. Anderson. 2002. Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 3-kinase-dependent PKC alpha activation. J. Biol. Chem. 277: 7875-7881. https://doi.org/10.1074/jbc.M109068200
- Peled, A., O. Kollet, T. Ponomaryov, I. Petit, S. Franitza, V. Grabovsky, M. M. Slav, A. Nagler, O. Lider, R. Alon, D. Zipori, and T. Lapidot. 2000. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95: 3289-3296.
- Ding, Z., T. B. Issekutz, G. P. Downey, and T. K. Waddell. 2003. L-selectin stimulation enhances functional expression of surface CXCR4 in lymphocytes: implications for cellular activation during adhesion and migration. Blood 101: 4245-4252. https://doi.org/10.1182/blood-2002-06-1782
- Ngo, H. T., X. Leleu, J. Lee, X. Jia, M. Melhem, J. Runnels, A. S. Moreau, N. Burwick, A. K. Azab, A. Roccaro, F. Azab, A. Sacco, M. Farag, R. Sackstein, and I. M. Ghobrial. 2008. SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood 112: 150-158. https://doi.org/10.1182/blood-2007-12-129395
- Meads, M. B., L. A. Hazlehurst, and W. S. Dalton. 2008. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin. Cancer Res. 14: 2519-2526. https://doi.org/10.1158/1078-0432.CCR-07-2223
- Damiano, J. S., A. E. Cress, L. A. Hazlehurst, A. A. Shtil, and W. S. Dalton. 1999. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93: 1658-1667.
- Zeng, Z., Y. X. Shi, I. J. Samudio, R. Y. Wang, X. Ling, O. Frolova, M. Levis, J. B. Rubin, R. R. Negrin, E. H. Estey, S. Konoplev, M. Andreeff, and M. Konopleva. 2009. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 113: 6215-6224. https://doi.org/10.1182/blood-2008-05-158311
- Rizzatti, E. G., R. P. Falcao, R. A. Panepucci, R. Proto-Siqueira, W. T. Anselmo-Lima, O. K. Okamoto, and M. A. Zago. 2005. Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the PI3K-AKT, WNT and TGFbeta signalling pathways. Br. J. Haematol. 130: 516-526. https://doi.org/10.1111/j.1365-2141.2005.05630.x
- Perez-Galan, P., H. Mora-Jensen, M. A. Weniger, A. L. Shaffer, 3rd, E. G. Rizzatti, C. M. Chapman, C. C. Mo, L. S. Stennett, C. Rader, P. Liu, N. Raghavachari, M. Stetler-Stevenson, C. Yuan, S. Pittaluga, I. Maric, K. M. Dunleavy, W. H. Wilson, L. M. Staudt, and A. Wiestner. 2011. Bortezomib resistance in mantle cell lymphoma is associated with plasmacytic differentiation. Blood 117: 542-552. https://doi.org/10.1182/blood-2010-02-269514
- Bleul, C. C., R. C. Fuhlbrigge, J. M. Casasnovas, A. Aiuti, and T. A. Springer. 1996. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 184: 1101-1109. https://doi.org/10.1084/jem.184.3.1101
- Nagasawa, T., H. Kikutani, and T. Kishimoto. 1994. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc. Natl. Acad. Sci. U. S. A. 91: 2305-2309. https://doi.org/10.1073/pnas.91.6.2305
- Felsher, D. W., and J. M. Bishop. 1999. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4: 199-207. https://doi.org/10.1016/S1097-2765(00)80367-6
Cited by
- SOX11 promotes tumor protective microenvironment interactions through CXCR4 and FAK regulation in mantle cell lymphoma vol.130, pp.4, 2014, https://doi.org/10.1182/blood-2017-04-776740
- Rationale for targeting tumor cells in their microenvironment for mantle cell lymphoma treatment vol.59, pp.5, 2014, https://doi.org/10.1080/10428194.2017.1357177
- Clinical significance of chemokine receptor CXCR4 and mammalian target of rapamycin (mTOR) expression in patients with diffuse large B-cell lymphoma vol.59, pp.6, 2018, https://doi.org/10.1080/10428194.2017.1379077
- p110α Inhibition Overcomes Stromal Cell–Mediated Ibrutinib Resistance in Mantle Cell Lymphoma vol.17, pp.5, 2014, https://doi.org/10.1158/1535-7163.mct-17-0784
- C-X-C Chemokine Receptor 4 in Diffuse Large B Cell Lymphoma: Achievements and Challenges vol.142, pp.2, 2014, https://doi.org/10.1159/000497430