DOI QR코드

DOI QR Code

Growth and Physiological Responses of Indeciduous Quercus L. in Container by Fertilizing Treatment

시비 처리에 따른 상록 참나무속 수목의 용기 내 생장 및 생리적 반응

  • Kim, Jong Jin (Dept. of Environmental Planning, Konkuk University) ;
  • Lee, Seung Hak (Korea Forestry Promotion Institute) ;
  • Song, Ki Seon (Southern Forest Resources Research Center, Korea Forest Research Institute) ;
  • Jeon, Kwon Seok (Southern Forest Resources Research Center, Korea Forest Research Institute) ;
  • Choi, Jin Young (Dept. of Environmental Sciences, Graduate School of Konkuk University) ;
  • Choi, Kyu Seong (Dept. of Environmental Sciences, Graduate School of Konkuk University) ;
  • Lee, Seok Noh (Dept. of Environmental Sciences, Graduate School of Konkuk University) ;
  • Sung, Hwan In (Dept. of Forest and Landscape, Graduate School of Agriculture and Animal Science, Konkuk University)
  • 김종진 (건국대학교 녹지환경계획학과) ;
  • 이승학 (한국임업진흥원) ;
  • 송기선 (국립산림과학원 남부산림자원연구소) ;
  • 전권석 (국립산림과학원 남부산림자원연구소) ;
  • 최진영 (건국대학교 대학원 환경과학과) ;
  • 최규성 (건국대학교 대학원 환경과학과) ;
  • 이석노 (건국대학교 대학원 환경과학과) ;
  • 성환인 (건국대학교 농축대학원 산림조경학과)
  • Received : 2014.08.19
  • Accepted : 2014.12.18
  • Published : 2014.12.31

Abstract

BACKGROUND: This study was carried out in order to closely examine the influence of fertilization upon growth in container of seedling in indeciduous Quercus species (Q. mysinaefolia, Q. acuta and Q. glauca). METHODS AND RESULTS: Fertilizer level was made by adjusting water soluble compound fertilizer (N:P:K=19: 19:19, v/v) to 1000, 2000, $3000mg{\cdot}L^{-1}$ level along with non-fertilizing plot. Fertilization increased height, root collar diameter growth, and dry weight in these three species of trees. The more increase in fertilizer level led to the more rise even in growth of these species. H/D ratio and T/R ratio also showed tendency of getting bigger in the more rise in fertilizer level. Photosynthetic rate was shown to get higher in the higher fertilizer level according to fertilization in all the three species. In the analysis of root morphological traits, the total root length was surveyed to be longer in the more rise in fertilizer concentration. As even a case of root project area, surface area, and root volume is the similar tendency to characteristics in the total root length, a rise depending on fertilization was observed. CONCLUSION: In light of the results in this experiment, the fertilizer level is judged to be $2000mg{\cdot}L^{-1}$ level that is proper for production of 1-year-old container seedling in indeciduous Quercus species with excellent root development and high seedling quality index.

본 연구는 시비처리가 상록 참나무류(가시나무, 붉가시나무 및 종가시나무) 유묘의 용기 내 생장에 미치는 영향을 구명하고자 실시되었으며, 시비수준은 무시비구와 함께 수용성 복합비료(N:P:K=19:19:19, v/v)를 1000, 2000, $3000mg{\cdot}L^{-1}$ 수준으로 조절하여 시비하였다. 시비처리는 이들 3 수종의 간장과 근원경 생장 그리고 건물생산량을 증가시켰으며, 시비 수준이 증가할수록 이들 생장도 증가하였다. H/D율과 T/R율도 3 수종 모두 시비수준이 증가할수록 커지는 경향을 보였다. 광합성률은 3 수종 모두 시비처리에 의해 또 시비 수준이 높아질수록 높아진 것으로 나타났다. 뿌리 형태 특성 분석에서, 전체 뿌리길이의 경우 시비농도가 증가할수록 긴 것으로 조사되었다. 투영단면적, 표면적 및 뿌리부피의 경우도 전체 뿌리길이의 특성과 유사한 경향으로 시비처리에 따른 증가가 관찰되었다. 이상과 같은 결과로 볼 때 뿌리발달이 뛰어나며 묘목품질지수가 높은 상록 참나무류의 1년생 용기묘생산에 적합한 시비수준은 $2000mg{\cdot}L^{-1}$ 정도인 것으로 판단된다.

Keywords

References

  1. Alexander, A., Schroeder, M., 1987. Modern trends in foliar fertilization, J. Plant Nutrition 10, 1391-1399. https://doi.org/10.1080/01904168709363671
  2. Arsenault, J.L., Poulcur, S., Messier, C., Guay, R., 1995. WinRHIZO, a root-measuring system with a unique overlap correction method, HortScience 30, 906.
  3. Bouma, T.J., Nielsen, K.L., Koutstaal, B., 2000. Sample preparation and scanning protocol for computerized analysis of root length and diameter, Plant and Soil 218, 185-196.
  4. Byun, J.K., Kim, Y.S., Yi, M.J., Son, Y.H., Kim, C.S., Jeong, J.H., Lee, C.Y., Jeong, Y.H., 2007. Growth response of Pinus densiflora, Larix leptolepis, Betula platyphylla var. japonica and Quercus acutissima seedlings at various levels of fertilization, J. Korean For. Soc. 96, 693-698.
  5. Faria, T., Garcia-Plazaola, J.I., Abadia, A., Cerasoli, S. Pereira, J.S. and Chaves, M.M., 1996. Diurnal changes in photoprotective mechanism in leaves of cork oak (Quercus suber ) during summer, Tree Physiology 16, 115-123. https://doi.org/10.1093/treephys/16.1-2.115
  6. Fox, J.E.D., Surata, I.K., Suriamidhardja, S. 1990. Nursery potting mixture for Santalum album L. in Timor. Mulga Research Centre Journal 10, 38-44.
  7. Gilman, E.F., Harchick, C., Wiese, C., 2009. Pruning roots affects tree quality in container grown oaks, J. Environ. Hort. 27, 7-11.
  8. Gilman, E.F., Stodola, A., Marshall, M.D., 2002. Root pruning but not irrigation in the nursery affects Live Oak root balls and digging survival, J. Environ. Hort. 20, 122-126.
  9. Haase, D.L., 2007. Morphological and physiological evaluation of seedling quality, in: Riley, L.E., Dumroese R.K., Landes, T.D. (Eds), Proceedings of the conference "Forest and Conservation Nursery Associations- 2006", RMRS-P-50, USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA, pp. 3-8.
  10. Haase, D.L., 2008. Understanding forest seedling quality: measurements and interpretation, Tree Planter's Notes 52, 24-30.
  11. Harris, R.W., Davis, W.B., Stice, N.W., Long, D., 1971. Root pruning improves nursery tree quality, J. Amer. Soc. Hort. Sci. 96, 105-108.
  12. Hathaway, R.D., Whitcomb, C.E., 1984. Nutrition and performance of container-grown Japanese black pine seedlings, J. Environ. Hort. 2, 9-12.
  13. Hipps, N.A., Higgs, K.H., Collard, L.G., 1997. Effects of root wrenching and irrigation rate on the growth and water relations of Castanea sativa and Quercus robur seedlings in the nursery and after outplanting, Can. J. For. Res. 27, 180-188. https://doi.org/10.1139/x96-175
  14. Ingestad, T., 1979. Mineral nutrient requirement of Pinus silvestris and Picea abies seedlings, Physiol. Plant 45, 373-380. https://doi.org/10.1111/j.1399-3054.1979.tb02599.x
  15. Kim, P.G., Yi, Y.S., Chung, D.J., Woo, S.Y., Sung, J.H., Lee, E.J., 2001. Effects of light intensity on photosynthetic activity of shade tolerant and intolerant tree species, J. Korean For. Soc. 90, 476-487.
  16. Kim, S.H., Saung, J.H., Kim, Y.K., Kim, P.K., 2008. Photosynthetic responses of four oak species to changes in light environment, Kor. J. Agric. Meteorol 10, 141-148. https://doi.org/10.5532/KJAFM.2008.10.4.141
  17. Kwon, K.W., Lee, J.H., 1994. Growth performances and physiological responses of Quercus spp. and Fraxinus rhychonphylla subjected to different soil moisture regimes and nutrition levels, J. Korean For. Soc. 83, 164-174.
  18. Kwon, K.W., Cho, M.S., Kim, K.N., Lee, S.W., Jang, K.H., 2009. Photosynthetic characteristics and growth performances of containerized seedling and bare root seedling of Quercus acutissima growing at different fertilizing schemes, J. Korean For. Soc. 98, 331-338.
  19. Landis, T.D., Tinus, R.W., McDonald, S.E., Barnett, J.P., 1992. The Container Tree Nursery Manual, Vol. 3, Atmospheric Environment, Agriculture Handbook 674. ISBN 0-16-035885-X. USDA Forest Service, Washington DC. pp. 2-138.
  20. Landis, T.D., Tinus, R.W., McDonald, S.E. and Barnett, J.P. 1995. The Container Tree Nursery Manual. Vol. 1. Nursery Panning, Development and Management, Agriculture handbook 674. ISBN 0-16-045552-9. USDA Forest Service, Washington DC. pp. 102-113.
  21. Lee, B.S., Yoon, J.K., Lee, M.B., Jeong, Y.H., Park, S.K., Oh, M.Y., Noh, K.H., Kim, D.K., 1984. Findings on proper root pruning methods and its optimum implementing times of the major silvicultural species, For. Rep. For. Res. Inst. Korea 31, 31-45.
  22. Lee, C.B., 1999. Dendrology, pp. 148-158, fifth ed. Hyangmoonsa, Korea.
  23. Lim, J.H., Woo, S.Y., Kwon, M.J., Chun, J.H., Shin, J.H., 2006. Photosynthetic capacity and water use efficiency under different temperature regimes on healthy and declining Korean fir in Mt. Halla, J. Korean For . Soc. 95, 705-710.
  24. Oh, K.K., Choi, S.H., Na, K.T., Kim, S.H., 2004. Monitoring for the restoration of evergreen broad-leaved forest in warm temperate region (II), Kor. J. Env. Eco. 17, 316-323.
  25. Oh, K.K., Kim, Y.S., 1996. Restoration model of evergreen broad-leaved forests in warm temperate region (I) - vegetational structure -, Kor. J. Env. Eco. 10, 87-102.
  26. Oh, M.Y., 1982. Production of sound seedlings and root pruning, Sanlim 10, 5-17.
  27. Park, B.B., Byun, J.K., Kim, W.S., Sung, J.H., 2010. Growth and tissue nutrient responses of Fraxinus rhynchophylla, Fraxinus mandshurica, Pinus koraiensis , and Abies holophylla seedlings fertilized with nitrogen, phosphorus, and potassium at nursery culture, J. Korean For . Soc. 99, 85-95.
  28. Park, J.C., Yang, K.C., Jang, D.H., 2010. The movement of evergreen broad-leaved forest zone in the warm temperate region due to climate change in South Korea, J. Climate Research 5, 29-41.
  29. Park, S.G., Oh, K.K., 2002. Conservation status and restoration of the evergreen broad-leaved forests in the warm temperate region, Korea (I) - distribution of the evergreen broad-leaved forests and category of degraded levels -, Kor. J. Env. Eco. 16, 309-320.
  30. Phillion, B.J., Libby, M., 1984. Growth of potted black spruce seedlings at a range of fertilizer levels, The Plant Propagator 30, 10-11.
  31. Ritchie, G.A. 1984. Assessing seedling quality, in: Duryea, M.L., Landis, T.D. (Eds), Forest Nursery Manual 1 : Production of Bareroot Seedlings, Martinus Nijhoff Publishers, Netherlands, pp. 243-259.
  32. Shin, H.C., Park, N.C., Hwang, J.H., 2006. Warm Temperate Tree Species in Korea, Korea Forest Research Institute, Korea. pp. 26-37.
  33. Shin, J.A., Son, Y.H., Hong, S.G., Kim, Y.K., 1999. Effect of N and P fertilization on nutrition use efficiency of Pinus densiflora, Larix leptolepis , and Betula platyphylla var. japonica seedlings, Korean J. Environ. Agric. 18, 304-309.
  34. Song, K.S., Jeon, K.S., Choi, K.S., Choi, J.Y., Sung, H.I., Kim, J.J., 2014. Growth characteristics of Daphniphyllum macropodum seedlings of warm-temperate landscape tree by shading and fertilization treatment: Research on seedling production of D. macropodum by container nursery for meteorological disasters, J. Climate Research 9, 65-76. https://doi.org/10.14383/cri.2014.9.1.65
  35. Song, K.S., Sung, H.I., Cha, Y.G., Kim, J.J., 2011. Growth and physiological responses of 1-year-old containerized seedlings of Quercus myrsinaefolia by shading treatment, J. of Bio-Environment Control 20, 373-381.
  36. Sung, H.I., Song, K.S., Cha, Y.G., Kim, J.J., 2011. Characteristics of growth and seedling quality of 1-year-old container seedlings of Quercus myrsinaefolia by shading and fertilizing treatment, J. Korean For. Soc. 100, 598-608.
  37. Switzer, G.L., Nelson, L.E., 1963. Effects of nursery fertility and density on seedling characteristics yield, and field performance of lobloly pine (Pinus taeda L.), Soil Sci. Soc. Amer. Proc. 27, 461-464. https://doi.org/10.2136/sssaj1963.03615995002700040028x
  38. Timmer, V.R., Armstrong, G., 1987. Diagnosing nutritional status of containerized tree seedlings : comparative plant analyses, Soil Sci. Soc. Amer. J. 51, 1082-1086. https://doi.org/10.2136/sssaj1987.03615995005100040048x
  39. Wang, R.Z., 2001. Photosynthesis, transpiration and water use efficiency of vegetative and reproductive shoots of grassland species from north-eastern China, Photosynthetica 39, 569-573. https://doi.org/10.1023/A:1015660213811
  40. Wang, M.B., Zhang, Q., 2009. Issues in using the WinRHIZO system to determine physical characteristics of plant fine roots, Acta Ecologica Sinica 29, 136-138. https://doi.org/10.1016/j.chnaes.2009.05.007
  41. Yoon, T.S., Hong, S.G., 2002. Studies on production of high-quality Cornus controversa container seedlings, J. Kor. For. En. 21, 28-33.
  42. Yun, J.H., Kim, J.H., Oh, K.H., Lee, B.Y., 2011. Distributional change and climate condition of warm- temperate evergreen broad-leaved tree in Korea, Kor. J. Env. Eco. 25, 47-56.

Cited by

  1. Effect of above and below-ground container cultivation on growth of Quercus glauca 4 years old seedlings vol.49, pp.6, 2015, https://doi.org/10.14397/jals.2015.49.6.9