DOI QR코드

DOI QR Code

Transfer Function for Phytoavailable Heavy Metals in Contaminated Agricultural Soils: The Case of The Korean Agricultural Soils Affected by The Abandoned Mining Sites

중금속 오염 농경지의 식물유효태 예측 모델식 개발: 우리나라 폐광산 인근 농경지 토양 사례 연구

  • Lim, Ga-Hee (Department of Environment Horticulture, University of Seoul) ;
  • Kim, Kye-Hoon (Department of Environment Horticulture, University of Seoul) ;
  • Seo, Byoung-Hwan (Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology) ;
  • Kim, Kwon-Rae (Department of Agronomy and Medicinal Plant Resources, Gyeongnam National University of Science and Technology)
  • 임가희 (서울시립대학교 환경원예학과) ;
  • 김계훈 (서울시립대학교 환경원예학과) ;
  • 서병환 (경남과학기술대학교 농학한약자원학부) ;
  • 김권래 (경남과학기술대학교 농학한약자원학부)
  • Received : 2014.09.29
  • Accepted : 2014.10.29
  • Published : 2014.12.31

Abstract

BACKGROUND: Application of the transfer functions derived from local soil data is necessary in order to develop proper management protocols for agricultural soils contaminated with heavy metals through phytoavailability control of the heavy metals. The aim of this study was to derive the transfer functions of Korean agricultural soils affected by the abandoned mining sites and evaluate suitability of the derived transfer functions. METHODS AND RESULTS: 142 agricultural soils affected by the abandoned mining sites were collected and analyzed. Two extraction methods, including 1 M $NH_4NO_3$ extraction and 0.01 M $Ca(NO_3)_2$ extraction were applied to determine phytoavailable metal pools in soils. Multiple stepwise regression of phytoavailable metal pools against the corresponding total metal concentration and soil properties was conducted to derive suitable transfer functions for estimating phytoavailable heavy metal pools. Applicability of the derived transfer functions was examined by calculating NME and NRMSE. CONCLUSION: Soil pH and organic matter were valid variables for derivation of the transfer functions which were applicable for estimating phytoavailable metal concentrations in the soils being contaminated by heavy metals. In addition, it was confirmed that transfer functions need to be developed based on local soil conditions to accurately estimate heavy metal-phytoavailability.

Keywords

References

  1. Antoniadis, V., Robinson, J.S., Alloway, B.J., 2008. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field, Chemosphere 71, 759-764. https://doi.org/10.1016/j.chemosphere.2007.10.015
  2. Bingham, F.T., Sposito, G., Strong, J.E., 1984. The effect of chloride on the availability of cadmium, J. Environ. Qual. 13, 71-74.
  3. Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J.H., Makino, T., Kirkham, M.B., Scheckel, K., 2014. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize?, J. Hazard. Mater. 266, 141-166. https://doi.org/10.1016/j.jhazmat.2013.12.018
  4. Bonten, L.T.C., Groenenberg, J.E., Weng, L., van Riemsdijk, W.H., 2008. Use of speciation and complexation models to estimate heavy metal sorption in soils, Geoderma 146, 303-310. https://doi.org/10.1016/j.geoderma.2008.06.005
  5. De Vries, W., Bakker, D.J., Groenenberg, J.E., Reinds, G.J., Bril, J., van Jaarsveld, J.A., 1998. Calculation and mapping of critical loads for heavy metals and persistent organic pollutants for Dutch forest soils, J. Hazard. Mater. 61, 99-106. https://doi.org/10.1016/S0304-3894(98)00113-7
  6. De Vries, W., Romkens, P.F.A.M., Bonten, L.T.C., 2008. Spatially explicit integrated risk assessment of present soil concentrations of cadmium, lead, copper and zinc in the Netherlands, Water Air Soil Pollut. 191, 199-215. https://doi.org/10.1007/s11270-008-9617-z
  7. De Vries, W., McLaughlin, M.J., Groenenberg, J.E., 2011. Transfer functions for solid-solution partitioning of cadmium for Australian soils, Environ. Pollut. 159, 3583-3594. https://doi.org/10.1016/j.envpol.2011.08.006
  8. Gray, C.W., McLaren, R.G., Roberts, A.H.C., Condron, L.M., 1998. Sorption and desorption of cadmium from some New Zealand soils: effect of pH and time, Aust. J. Soil Res. 32, 192-216.
  9. Gray, C.W., McLaren, R.G., Roberts, A.H.C., Condron, L.M., 1999. Solubility, sorption, and desorption of added cadmium in relation to properties of soils in New Zealand, Eur. J. Soil Sci. 50, 127-137. https://doi.org/10.1046/j.1365-2389.1999.00221.x
  10. Groenenberg, J.E., Romkens, P.F.A.M., De Vries, W., 2006. Prediction of the Long Term Accumulation and Leaching of Copper in Dutch Agricultural Soils: a Risk Assessment Study, pp. 53-56, Alterra Report 1278, Alterra, Netherlands.
  11. Groenenberg, J.E., Romkens, P.F.A.M., Comans, R.N.J., Luster, J., Pampura, T., Shotbolt, L., Tipping, E., De Vries, W., 2010. Transfer functions for solid-solution partitioning of cadmium, copper, nickel, lead and zinc in soils: derivation of relationships for free metal ion activities and validation with independent data, Eur. J. soil sci. 61, 58-73. https://doi.org/10.1111/j.1365-2389.2009.01201.x
  12. Groenenberg, J.E., 2011. Evaluation of Models for Metal Partitioning and Speciation in Soils and Their Use in Risk Assessment. pp. 201-206, Wageningen University, Netherlands.
  13. Gupta, A.K., Sinha, S., 2007. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil, J. Hazard. Mater. 149, 144-150. https://doi.org/10.1016/j.jhazmat.2007.03.062
  14. Janssen, P.H.M., Heuberger, P.S.C., 1995. Calibration of process-oriented models, Ecol. Model. 83, 55-66. https://doi.org/10.1016/0304-3800(95)00084-9
  15. Kang, S.S., Roh, A.S., Choi, S.C., Kim, Y.S., Kim, H.J., Choi, M.T., Ahn, B.K., Kim, H.W., Kim, H.K., Park, J.H., Lee, Y.H., Yang, S.H., Ryu, J.S., Jang, Y.S., Kim, M.S., Son, Y.K., Lee, C.H., Ha, S.G., Lee, D.B., Kim, Y.H., 2012. Status and changes in chemical properties of paddy soil in Korea, Korean J. Soil Sci. Fert. 45, 968-972. https://doi.org/10.7745/KJSSF.2012.45.6.968
  16. Kashem, M.A., Singh, B.R., 2001. Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn, Nutrient Cycl. Agroecosystems 61, 247-255. https://doi.org/10.1023/A:1013762204510
  17. Kim, K.R., Owens, G., Naidu, R., Kim, K.H., 2007. Assessment techniques of heavy metal bioavailability in soil - A critical review, Kor. J. Soil Sci. Fert. 40, 311-325.
  18. Kim, K.R., Owens, G., Naidu, R., 2009. Heavy metal distribution, bioaccessibility, and phytoavailability in long-term contaminated soils from Lake Macquarie, Australia. Aust. J. Soil Res. 47, 166-176. https://doi.org/10.1071/SR08054
  19. Kim, K.R., Kim, J.G., Park, J.S., Kim, M.S., Owens, G., Youn, G.H., Lee, J.S., 2012. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production, J. Environ. Manag. 102, 88-95. https://doi.org/10.1016/j.jenvman.2012.02.001
  20. Krishnamurti, G.S.R., Huang, P.M., Kozak, L.M., 1999. Sorption and desorption kinetics of cadmium from soils: influence of phosphate, Soil Science 164, 888-898. https://doi.org/10.1097/00010694-199912000-00002
  21. Krishnamurti, G.S.R., Naidu, R., 2003. Solid-solution equilibria of cadmium in soils, Geoderma 113, 17-30. https://doi.org/10.1016/S0016-7061(02)00313-0
  22. McBride, M.B., 1994. Environmental Chemistry of Soils, pp.308-341, Oxford University Press, United States.
  23. McLaughlin, M.J., Maier, N.A., Correll, R.L., Smart, M.K., Sparrow, L.A., McKay, A., 1999. Prediction of cadmium concentrations in potato tubers (Solanum tuberosum L.) by pre-plant soil and irrigation water analyses, Aust. J. soil Res. 37, 191-207. https://doi.org/10.1071/S98031
  24. Miller, W.P., Miller, M., 1987. A micro pipette method for soil mechanical analysis, Commun. Soil Sci. Plant Anal. 18, 1-15. https://doi.org/10.1080/00103628709367799
  25. Naidu, R., Bolan, N.S., Kookana, R.S., Tiller, K.G., 1994. Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils, Eur. J. Soil Sci. 45, 419-429. https://doi.org/10.1111/j.1365-2389.1994.tb00527.x
  26. Pueyo, M., Lopez-Sanchez, J.F., Rauret, G., 2004. Assessment of $CaCl_2$, $NaNO_3$ and $NH_4NO_3$ extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils, Anal. Chim. Acta 504, 217-226. https://doi.org/10.1016/j.aca.2003.10.047
  27. Ruby, M.V., Davis, A., Link, T.E., Schoof, R., Chaney, R.L., Freeman, G.B., Bergstrom, P., 1993. Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead, Environ. Sci. Tech. 27, 2870-2877. https://doi.org/10.1021/es00049a030
  28. Sauve, S., Hendershot, W., Allen, H.E., 2000a. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ. Sci. Tech. 34, 1125-1131. https://doi.org/10.1021/es9907764
  29. Sauve, S., Norvell, W.A., McBride, M., Hendershot, W., 2000b. Complexation and speciation of cadmium in extracted soil solutions. Environ. Sci. Tech. 34, 291-296. https://doi.org/10.1021/es990202z
  30. Schwertmann, U., 1964. The differentiation of iron oxide in soils by a photochemical extraction with acid ammonium oxalate, Z. Pflanzenernahr Dung. Bodenkunde. 105, 194-201. https://doi.org/10.1002/jpln.3591050303
  31. Schwertmann, U., 1973. Use of oxalate for Fe extraction from soils, Can. J. Soil Sci. 53, 244-246. https://doi.org/10.4141/cjss73-037
  32. Seo, B.H., Lim, G.H., Kim, K.H., Kim, J.H., Hur, J.H., Kim, W.I., Kim, K.R., 2013. Comparison of single extractions for evaluation of heavy metal phytoavailability in soil, Korean J. Environ. Agric. 32, 171-178. https://doi.org/10.5338/KJEA.2013.32.3.171
  33. Tack, F.M.G., Van Ranst, E., Lievens, C., Vandenberghe, R.E., 2006. Soil solution Cd, Cu and Zn concentrations as affected by short-time drying or wetting: the role of hydrous oxides of Fe and Mn, Geoderma 137, 83-89. https://doi.org/10.1016/j.geoderma.2006.07.003
  34. Wang, X.P., Shan, X.Q., Zhang, S.Z., Wen, B., 2004. A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions. Chemosphere 55, 811-822. https://doi.org/10.1016/j.chemosphere.2003.12.003
  35. Yoon, J.K., Kim, D.H., Kim, T.S., Park, J.G., Chung, I.R., Kim, J.H., Kim, H., 2009. Evaluation on natural background of the soil heavy metals in Korea, J. Soil Groundwater Environ. 14, 32-39.

Cited by

  1. Differences in Heavy Metal Accumulation in Different Medicinal Plants in Association with Lime Application vol.49, pp.3, 2016, https://doi.org/10.7745/KJSSF.2016.49.3.271