References
- Anderson, D.J. (1997). Cellular and molecular biology of neural crest cell lineage determination. Trends Genet. 13, 276-280. https://doi.org/10.1016/S0168-9525(97)01187-6
- Bae, Y.S., Oh, H., Rhee, S.G., and Yoo, Y.D. (2011). Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32, 491-509. https://doi.org/10.1007/s10059-011-0276-3
- Birren, S.J., Lo, L., and Anderson, D.J. (1993). Sympathetic neuroblasts undergo a developmental switch in trophic dependence. Development 119, 597-610.
- Buggisch, M., Ateghang, B., Ruhe, C., Strobel, C., Lange, S., Wartenberg, M., and Sauer, H. (2007). Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by reactive oxygen species and NADPH oxidase. J. Cell Sci. 120, 885-894. https://doi.org/10.1242/jcs.03386
- Chiarugi, P., and Giannoni, E. (2008). Anoikis: a necessary death program for anchorage-dependent cells. Biochem. Pharmacol. 76, 1352-1364. https://doi.org/10.1016/j.bcp.2008.07.023
- Gao, X.P., Standiford, T.J., Rahman, A., Newstead, M., Holland, S.M., Dinauer, M.C., Liu, Q.H., and Malik, A.B. (2002). Role of NADPH oxidase in the mechanism of lung neutrophil sequestration and microvessel injury induced by Gram-negative sepsis: studies in p47phox-/- and gp91phox-/- mice. J. Immunol. 168, 3974-3982. https://doi.org/10.4049/jimmunol.168.8.3974
- Groeger, G., Quiney, C., and Cotter, T.G. (2009). Hydrogen peroxide as a cell-survival signaling molecule. Antioxid. Redox Signal. 11, 2655-2671. https://doi.org/10.1089/ars.2009.2728
- Kim, J., Lo, L., Dormand, E., and Anderson, D.J. (2003). SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38, 17-31. https://doi.org/10.1016/S0896-6273(03)00163-6
- Kim, K.S., Choi, H.W., Yoon, H.E., and Kim, I.Y. (2010). Reactive oxygen species generated by NADPH oxidase 2 and 4 are required for chondrogenic differentiation. J. Biol. Chem. 285, 40294-40302. https://doi.org/10.1074/jbc.M110.126821
- Le Douarin, N.M. (1980). The ontogeny of the neural crest in avian embryo chimaeras. Nature 286, 663-669. https://doi.org/10.1038/286663a0
- Lee, J.E., Hollenberg, S.M., Snider, L., Turner, D.L., Lipnick, N., and Weintraub, H. (1995). Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268, 836-844. https://doi.org/10.1126/science.7754368
- Lee, K.E., Nam, S., Cho, E.A., Seong, I., Limb, J.K., Lee, S., and Kim, J. (2008). Identification of direct regulatory targets of the transcription factor Sox10 based on function and conservation. BMC Genomics 9, 408. https://doi.org/10.1186/1471-2164-9-408
- Lee, J.H., Joo, J.H., Kim, J., Lim, H.J., Kim, S., Curtiss, L., Seong, J.K., Cui, W., Yabe-Nishimura, C., and Bae, Y.S. (2013). Interaction of NADPH oxidase 1 with Toll-like receptor 2 induces migration of smooth muscle cells. Cardiovasc. Res. 99, 483-493. https://doi.org/10.1093/cvr/cvt107
- Lo, L., Dormand, E., Greenwood, A., and Anderson, D.J. (2002). Comparison of the generic neuronal differentiation and neuron subtype specification functions of mammalian achaete-scute and atonal homologs in cultured neural progenitor cells. Development 129, 1553-1567.
- Ma, Q., Chen, Z., del Barco Barrantes, I., de la Pompa, J.L., and Anderson, D.J. (1998). neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20, 469-482. https://doi.org/10.1016/S0896-6273(00)80988-5
- Madenspacher, J.H., Azzam, K.M., Gowdy, K.M., Malcolm, K.C., Nick, J.A., Dixon, D., Aloor, J.J., Draper, D.W., Guardiola, J.J., Shatz, M., et al. (2013). p53 Integrates host defense and cell fate during bacterial pneumonia. J. Exp. Med. 210, 891-904. https://doi.org/10.1084/jem.20121674
- Mandal, C.C., Ganapathy, S., Gorin, Y., Mahadev, K., Block, K., Abboud, H.E., Harris, S.E., Ghosh-Choudhury, G., and Ghosh-Choudhury, N. (2011). Reactive oxygen species derived from Nox4 mediate BMP2 gene transcription and osteoblast differentiation. Biochem. J. 433, 393-402. https://doi.org/10.1042/BJ20100357
- Matsuno, K., Yamada, H., Iwata, K., Jin, D., Katsuyama, M., Matsuki, M., Takai, S., Yamanishi, K., Miyazaki, M., Matsubara, H., et al. (2005). Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation 112, 2677-2685. https://doi.org/10.1161/CIRCULATIONAHA.105.573709
- Milosevic, N., Bekhite, M.M., Sharifpanah, F., Ruhe, C., Wartenberg, M., and Sauer, H. (2010). Redox stimulation of cardiomyogenesis versus inhibition of vasculogenesis upon treatment of mouse embryonic stem cells with thalidomide. Antioxid. Redox. Signal. 13, 1813-1827. https://doi.org/10.1089/ars.2010.3139
- Morrison, S.J., White, P.M., Zock, C., and Anderson, D.J. (1999). Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737-749. https://doi.org/10.1016/S0092-8674(00)80583-8
- Nadworny, A.S., Guruju, M.R., Poor, D., Doran, R.M., Sharma, R.V., Kotlikoff, M.I., and Davisson, R.L. (2013). Nox2 and Nox4 influence neonatal c-kit(+) cardiac precursor cell status and differentiation. Am. J. Physiol. Heart Circ. Physiol. 305, H829-842. https://doi.org/10.1152/ajpheart.00761.2012
- Paoli, P., Giannoni, E., and Chiarugi, P. (2013). Anoikis molecular pathways and its role in cancer progression. Biochim. Biophys. Acta 1833, 3481-3498. https://doi.org/10.1016/j.bbamcr.2013.06.026
- Perris, R., and Perissinotto, D. (2000). Role of the extracellular matrix during neural crest cell migration. Mech. Dev. 95, 3-21. https://doi.org/10.1016/S0925-4773(00)00365-8
- Rosc-Schluter, B.I., Hauselmann, S.P., Lorenz, V., Mochizuki, M., Facciotti, F., Pfister, O., and Kuster, G.M. (2012). NOX2-derived reactive oxygen species are crucial for CD29-induced prosurvival signalling in cardiomyocytes. Cardiovasc. Res. 93, 454-462. https://doi.org/10.1093/cvr/cvr348
- Shah, N.M., Groves, A.K., and Anderson, D.J. (1996). Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 85, 331-343. https://doi.org/10.1016/S0092-8674(00)81112-5
- Simone, S., Cosola, C., Loverre, A., Cariello, M., Sallustio, F., Rascio, F., Gesualdo, L., Schena, F.P., Grandaliano, G., and Pertosa, G. (2012). BMP-2 induces a profibrotic phenotype in adult renal progenitor cells through Nox4 activation. Am. J. Physiol. Renal. Physiol. 303, F23-34. https://doi.org/10.1152/ajprenal.00328.2011
- Stemple, D.L., and Anderson, D.J. (1992). Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71, 973-985. https://doi.org/10.1016/0092-8674(92)90393-Q
Cited by
- What has passed is prolog: new cellular and physiological roles of G6PD vol.50, pp.10, 2016, https://doi.org/10.1080/10715762.2016.1223296
- Blue light potentiates neurogenesis induced by retinoic acid-loaded responsive nanoparticles vol.59, 2017, https://doi.org/10.1016/j.actbio.2017.06.044
- Hypoxia and hyperoxia differentially control proliferation of rat neural crest stem cells via distinct regulatory pathways of the HIF1α-CXCR4 and TP53-TPM1 proteins vol.246, pp.3, 2017, https://doi.org/10.1002/dvdy.24481
- Role of Nox4 in Neuronal Differentiation of Mouse Subventricular Zone Neural Stem Cells vol.26, pp.1, 2016, https://doi.org/10.5352/JLS.2016.26.1.8
- NADPH Oxidases: Insights into Selected Functions and Mechanisms of Action in Cancer and Stem Cells vol.2017, 2017, https://doi.org/10.1155/2017/9420539
- Redox signaling mechanisms in nervous system development 2018, https://doi.org/10.1089/ars.2017.7284
- Nox2 and Nox4 regulate self-renewal of murine induced-pluripotent stem cells vol.68, pp.12, 2016, https://doi.org/10.1002/iub.1574
- A 2-Substituted 8-Hydroxyquinoline Stimulates Neural Stem Cell Proliferation by Modulating ROS Signalling vol.74, pp.3, 2016, https://doi.org/10.1007/s12013-016-0747-4
- Nox, Reactive Oxygen Species and Regulation of Vascular Cell Fate vol.6, pp.4, 2017, https://doi.org/10.3390/antiox6040090
- Glucose-6-phosphate dehydrogenase is indispensable in embryonic development by modulation of epithelial-mesenchymal transition via the NOX/Smad3/miR-200b axis vol.9, pp.1, 2018, https://doi.org/10.1038/s41419-017-0005-8
- Novel crosstalk between Vps26a and Nox4 signaling during neurogenesis pp.1476-5403, 2018, https://doi.org/10.1038/s41418-018-0226-0
- PARP3 controls TGFβ and ROS driven epithelial-to-mesenchymal transition and stemness by stimulating a TG2-Snail-E-cadherin axis vol.7, pp.39, 2014, https://doi.org/10.18632/oncotarget.11627
- PARP3 comes to light as a prime target in cancer therapy vol.18, pp.12, 2014, https://doi.org/10.1080/15384101.2019.1617454
- Oxidative Stress, Neuroinflammation, and NADPH Oxidase: Implications in the Pathogenesis and Treatment of Alzheimer’s Disease vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/7086512
- NADPH Oxidases: Redox Regulators of Stem Cell Fate and Function vol.10, pp.6, 2014, https://doi.org/10.3390/antiox10060973
- Metabolic and Redox Regulation of Cardiovascular Stem Cell Biology and Pathology vol.35, pp.3, 2014, https://doi.org/10.1089/ars.2020.8201