DOI QR코드

DOI QR Code

The Big Data Analysis and Medical Quality Management for Wellness

웰니스를 위한 빅데이터 분석과 의료 질 관리

  • Cho, Young-Bok (Dept. of Computer Science, Chungbuk National University) ;
  • Woo, Sung-Hee (Dept. of Medical Informatics & Engineering, Korea National University of Transportation) ;
  • Lee, Sang-Ho (Dept. of Computer Science, Chungbuk National University)
  • 조영복 (충북대학교 소프트웨어학과) ;
  • 우성희 (한국교통대학교 의료정보공학과) ;
  • 이상호 (충북대학교 소프트웨어학과)
  • Received : 2014.07.22
  • Accepted : 2014.10.02
  • Published : 2014.12.31

Abstract

Medical technology development and increase the income level of a "Long and healthy Life=Wellness," with the growing interest in actively promoting and maintaining health and wellness has become enlarged. In addition, the demand for personalized health care services is growing and extensive medical moves of big data, disease prevention, too. In this paper, the main interest in the market, highlighting wellness in order to support big data-driven healthcare quality through patient-centered medical services purposes. Patients with drug dependence treatment is not to diet but to improve disease prevention and treatment based on analysis of big data. Analysing your Tweets-daily information and wellness disease prevention and treatment, based on the purpose of the dictionary. Efficient big data analysis for node while increasing processing time experiment. Test result case of total access time efficient 26% of one node to three nodes and case of data storage is 63%, case of data aggregate is 18% efficient of one node to three nodes.

의학기술의 발전과 소득수준의 증가로 "건강하게 오래살기"에 관심이 높아지면서 적극적으로 건강을 증진하고 유지하는 웰니스가 확대되고 있다. 또한 맞춤형 의료서비스에 대한 수요가 증가하고 방대한 의료 빅 데이터를 이용한 질병 예방의 움직임도 나타나고 있다. 이 논문에서는, 의료 시장에서 주요 관심분야로 부각되고 있는 웰니스를 지원하기위해 빅 데이터 기반의 의료 질 향상을 통한 환자중심의 의료서비스를 목적으로 한다. 환자를 약물에 의존적으로 치료만 하는 것이 아니라 식생활 개선을 기반으로 질병예방과 치료를 위해 빅데이터를 분석한다. 개인 트윗터를 분석해서 일상생활정보를 획득하고 웰니스 사전을 기반으로 질병예방과 치료를 목적으로 한다. 효율적인 빅데이터 분석을 위해 하둡노드를 증가하면서 데이터 처리시간을 실험하였다. 실험결과 저장시간의 경우 63%, 데이터 통합의 경우 18%, 전체 테스트 시간을 기준으로 26%로 하나의 노드로 처리하는 경우보다 세 개의 노드로 처리하는 것이 효율적임을 실험을 통해 확인하였다.

Keywords

References

  1. Sukja Ko, "Health Risk Prediction Using Big Health Data", The Journal of The Korea Institute for Health and Social Affairs, Vol.13, No.11, pp.43-52, 2012.
  2. Taemin Song, "South Korea health and welfare big data trends and proposals", Science and Technology Policy Institute, Vol.23, No.3, pp.56-73, 2013.
  3. Straus, Sharon E., etal., Evidence-Based Medicine-How to Practiceand Teach EBM, 3thed. Elsevier, London, 2005.
  4. Yongju Park, Gyeongeun Kong, "Wellness centered on big data with our overseas medical industry facts", www.digieco.co.kr, 2013.
  5. Yeonghui Noh etl, "Wellness industry's business model analysis of a study on industrial development-policy report", The National IT Promotion Agency, 2012.
  6. Seongsu Kim, "Building an effective business model of the industry of medical ICT convergence measures for them", www.digieco.co.kr, 2013.
  7. Seongryeol Yoon, "A study on health information communication and security system for PHR service", Gachon University Graduate schools, department of computer engineering, a doctor's thesis, 2013.
  8. Sunhyeong Jung, Jongryeol Park, " Study on Telemedicine system in Medical Law", Journal of The Korea Society of Computer and Information, Vol.17, No.12, pp.241-249, 2012. https://doi.org/10.9708/jksci/2012.17.12.241
  9. Foto N. Afrati, Jeffrey D. Ullman, "Optimizing Multiway Joins in a Map-Reduce Environment," IEEE Transactions on Knowledge and Data Engineering, Vol.23, No.9, pp.1282-1298, 2011. https://doi.org/10.1109/TKDE.2011.47
  10. Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar, Rafael Pasquini, "Incoop: MapReduce for Incremental Computations," In Proceedings of SOCC'11, 2011.
  11. Sungsoo Kim, "Study on Big Data Utilization Plans of Medical Institutions", Journal of Digital convergence, Vol.12, No.2, pp.397-407, 2014 https://doi.org/10.14400/JDC.2014.12.2.397
  12. Daeseog Heo, "Evidence-based Healthcare in Korea", Korean Medical Association, pp.934-935, 2009.
  13. Yongbin Kim, Problems of Personal Information Protection in Big Data Utilization and an Improvement Method Using PIMS, Kangwon National University industry graduate school,computer information and telecommunication engineering, a master's thesis, 2013.
  14. Youngbok Cho, Sunghee Woo, Sangho Lee, "The cloudHIS System for Personal Healthcare Information Integration Scheme of Cloud Computing Environment", Journal of the Korea society of computer and information, Vol.19, No.5 , pp.27-35, 2014.

Cited by

  1. 빅데이터 기반 만성질환자의 삶의 질에 미치는 영향분석 vol.23, pp.11, 2014, https://doi.org/10.6109/jkiice.2019.23.11.1351
  2. Social mining-based clustering process for big-data integration vol.12, pp.1, 2014, https://doi.org/10.1007/s12652-020-02042-7