DOI QR코드

DOI QR Code

A Study on Polymerization of Oxocane High Explosives

  • Kim, Joon-Tae (Department of Oriental Medicine Materials, Dongshin University)
  • Received : 2014.10.29
  • Accepted : 2014.12.25
  • Published : 2014.12.31

Abstract

Oxocane high explosives substituted to explosive group such as azide (-CH2N3), nitrate (-CH2ONO2), and hydrazine (-CH2N2H3) are investigated theoretically the acid catalyzed reaction using the semiempirical MINDO/3, MNDO and AM1 methods to use as the guidelines of high explosives. The nucleophilicity and basicity of oxocane high explosives can be explained by the value of negative charge on oxygen atom of oxocane and the reactivity in propagation step can be represented by the value of positive charge on carbon atom and low electrophile LUMO energy. It was known that carbenium ion was favorable due to the stable energy (11.745~25.461 Kcal/mol) between oxonium ion and carbenium ion in the process of cyclic oxonium ion of oxocane high explosives being converted to open carbenium ion in oxocane high explosives. The value of concentration of cyclic oxonium ion and open carbenium ion in equilibrium status was found to be a major determinant of mechanism, it was expected to react faster in the prepolymer propagation step in SN1 mechanism than in that of SN2.

Keywords

References

  1. S. Penczek, P. Kubisa, and R. Szymmanski, "Activated monomer propagation in cationic polymerizations", Makromol. Chem., Macromol. Symp., Vol. 3, pp. 203-220, 1986. https://doi.org/10.1002/masy.19860030116
  2. D. Cremer and E. Kraka, "Theoretical determination of molecular structure and conformation. 15. Three-membered rings: bent bond, ring strain, and surface delocalization", J. Am. Chem. Soc., Vol. 107, pp. 3800-3810, 1985. https://doi.org/10.1021/ja00299a009
  3. S. Penczek and R. Szymanski, "The carbenium iononium ion equilibria in cationic polymerization", Polym. J., Vol. 12, pp. 617-628, 1980. https://doi.org/10.1295/polymj.12.617
  4. J. C. W. Chien, Y. G. Cheun and C. P. Lillya, "Cationic polymerization of dioxepane and its 2-alkyl derivatives", Macromolecules, Vol. 21, pp. 870-875, 1988. https://doi.org/10.1021/ma00182a003
  5. S. Sasaki and A. R. Senta "Handbook of proton-NMR spectra and data", Ed. Asahi Research Center Co. Ltd, Academic Press Inc., Tokyo, Vol. 1-5, 1985.
  6. Y. G. Cheun, J. T. Kim, and S. K. Park, "Theoretical studies on the cationic polymerization mechanism of oxetanes", J. Korean Chem. Soc., Vol. 35, pp. 636-644, 1991.
  7. J. T. Kim, "A study based on molecular orbital theory polymerization of oxetane high explosives", J. Korean Ind. Eng. Chem.. Vol. 20, pp. 159-164, 2009.
  8. J. T. Kim, "Theoretical study on polymerization of oxepane high explosives", J. Chosun Natural Sci., Vol. 5, pp. 175-181, 2012. https://doi.org/10.13160/ricns.2012.5.3.175
  9. N. P. Cheremisinoff (Ed). "Handbook of polymer science and technology", Marcel Dekker, Inc., New York and Basel, Vol. 3, pp. 503-539, 1989.
  10. S. C. Moon, H. S. Jung, J. C. Lee, J. W. Hong, J. K. Choi, and B. W. Jo, "Preparation and properties of low density polyethylene/organo-clay nanocomposite", J. Korean Ind. Eng. Chem., Vol. 16, pp. 52-60, 2005.
  11. S. H. Park, T. V. Phuong, H. W. Song, K. N. Park, B. M. Kim, and Y. S. Choe, "Mechanical properties and morphology of epoxy/polyamide/DDS/2E4MZ-CNS reactive blends", J. Korean Ind. Eng. Chem., Vol. 19, pp. 471-476, 2008.
  12. M. J. S. Dewar, E. G. Healy, and J. J. P. Stewart, QCPE, Program 506, Version 2.10 was used in this work.
  13. M. J. S. Dewar, E. G. Zoebisch, and J. J. P. Stewart, "Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model", J. Am. Chem. Soc., Vol. 107, pp. 3902-3909, 1985. https://doi.org/10.1021/ja00299a024
  14. M. J. S. Dewar and W. Thiel, "Ground states of molecules. 39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen", J. Am. Chem. Soc., Vol. 99, pp. 4907-4917, 1977. https://doi.org/10.1021/ja00457a005
  15. I. Fleming, "Frontier orbitals and organic chemical reactions", Wiley Interscience, New York, 5th, 2006.
  16. G. Klopman, "Chemical reactivity and the concept of charge- and frontier-controlled reactions", J. Am. Chem. Soc., Vol. 90, pp. 223-234, 1968. https://doi.org/10.1021/ja01004a002
  17. B. Bigot, A. Sevin, and A. Devaquet, "Ab initio SCF calculation on the photochemical behavior of the three-membered rings, 3. Oxirane: ring opening", J. Am. Chem. Soc., Vol. 101, pp. 1095-1100, 1979. https://doi.org/10.1021/ja00499a007