DOI QR코드

DOI QR Code

Comparative Molecular Similarity Indices Analysis of Caspase-3 Inhibitors

  • Babu, Sathya (Department of Bioinformatics, School of Bioengineering, SRM University) ;
  • Madhavan, Thirumurthy (Department of Bioinformatics, School of Bioengineering, SRM University)
  • 투고 : 2014.11.13
  • 심사 : 2014.12.25
  • 발행 : 2014.12.31

초록

Caspases, a family of cysteinyl aspartate-specific proteases plays a central role in the regulation and the execution of apoptotic cell death. Activation of caspases-3 stimulates a signaling pathway that ultimately leads to the death of the cell. Hence, caspase-3 has been proven to be an effective target for reducing the amount of cellular and tissue damage. In this work, comparative molecular similarity indices analysis (CoMSIA) was performed on a series of 3,4-dihydropyrimidoindolones derivatives which are inhibitors of caspase-3. The best predictions were obtained for CoMSIA model ($q^2$ = 0.586, $r^2$ = 0.955). The predictive ability of test set ($r^2_{pred}$) was 0.723. Statistical parameters from the generated QSAR models indicated the data is well fitted and have high predictive ability. Our theoretical results could be useful to design novel and more potent caspase-3 derivatives.

키워드

참고문헌

  1. M. D. Jacobson, M. Weil, and M. C Raff, "Programmed cell death in animal development", Cell, Vol. 88, pp. 347-354, 1997. https://doi.org/10.1016/S0092-8674(00)81873-5
  2. G. M. Cohen, "Caspases: the executioners of apoptosis", J. Biochem., Vol. 326, pp. 1-16, 1997. https://doi.org/10.1042/bj3260001
  3. C. B. Thonberry and Y. Lazebnik, "Caspases: enemied within", Science, Vol. 281, pp. 1312-1316, 1998. https://doi.org/10.1126/science.281.5381.1312
  4. D. W. Nicolson, "Caspase structure, proteolytic substrates, and function during apoptotic cell death", Cell Death Differ., Vol. 6, pp. 1028-1042, 1999. https://doi.org/10.1038/sj.cdd.4400598
  5. J. Wang and M. J. Lenardo, "Roles of caspases in apoptosis, development and cytokine maturation revealed by homozygous gene deficiencies", J. Cell Sci., Vol. 113, pp. 753-757, 2000.
  6. M. Endres, S. Namura, M. Shomizu-Sasamata. C. Waeber, L. Zhang, T. Gomez-Isla, B. T. Hyman, and M. A. Moskowitz, "Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of caspase family", J. Cerebr. Blood F. Met., Vol. 18, pp. 238-247, 1998. https://doi.org/10.1097/00004647-199803000-00002
  7. K. M. Boatright and G. S. Salvesen, "Mechanisms of caspase activation", Curr. Opin. Cell Biol., Vol. 15, pp. 725-731, 2003. https://doi.org/10.1016/j.ceb.2003.10.009
  8. B. A. Callus and D. L. Vaux, "Caspase inhibitors: viral, cellular and chemical", Cell Death Differ., Vol. 14, pp. 73-78, 2007. https://doi.org/10.1038/sj.cdd.4402034
  9. B. R. Hu, C. L Liu, Y. Ouyang, K. Blomgren, and B. K. Siesjo, "Involvement of caspase-3 in cell death after hypoxischemia declines during brain maturation", J. Cerebr. Blood F. Met., Vol. 20, pp. 1294-1300, 2002.
  10. R. S. Hotchkiss, K. C. Chang, P. E. Swanson, K. W. Tinsley, J. J. Hui, P. Klender, S. Xanthoudakis, S. Roy, C. Black, E. Grimm, R. Aspiotis, Y. Han, D. W. Nicholson, and I. E. Karl, "Caspase inhibitors improves survival in sepsis: a critical role of the lymphocyte", Nat. Immunol., Vol.1, pp. 496-501, 2000. https://doi.org/10.1038/82741
  11. D. Lee, S. A. Long, J. H. Murray, J. L. Adams, M. E. Nuttall, D. P. Nadeau, K. Kikly, J. D. Winkler, C.-M. Sung, M. D. Ryan, M. A. Levy, P. M. Keller, and W. E. DeWolf, Jr., " Potent and selective non peptide inhibitors of caspase 3 and 7", J. Med. Chem., Vol. 44, pp. 2015-2026, 2001. https://doi.org/10.1021/jm0100537
  12. H. Yaoita, K. Ogawa, K. Maehara, and Y. Maruyama, "Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor", Circulation, Vol. 97, pp. 276-281, 1998. https://doi.org/10.1161/01.CIR.97.3.276
  13. J. Schoenberger, J. Bauer, J. Moosbauer, C. Eilles, and D. Grimm, "Innovative strategies in in-vivo apoptosis imaging", Curr. Med. Chem., Vol. 15, pp. 187-194, 2008. https://doi.org/10.2174/092986708783330647
  14. D. K. Perry, M. J. Smyth, H. R. Stennicke, G. S. Salvessan, P. Duriez, G. G. Poirier, and Y. A. Hannun, "Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis", J. Biol. Chem., Vol. 272, pp. 18530-18533, 1997. https://doi.org/10.1074/jbc.272.30.18530
  15. G. Porter and R. U. Janicke, "Emerging roles of caspase 3 in apoptosis", Cell Death Differ., Vol. 6, pp. 99-104, 1999. https://doi.org/10.1038/sj.cdd.4400476
  16. C. W. Scott, C. Sobotka-Brinker, D. E. Wilkins, R. T. Jacobs, J. J. Folmer, W. J. Frazee, R. V. Bhat, S. V. Ghanekar, and D. Aharony, "Novel small molecule inhibitors of caspase-3 block cellular and biochemical features of apoptosis", J. Pharmacol. Exp. Ther., Vol 304, pp. 433-440, 2003. https://doi.org/10.1124/jpet.102.039651
  17. D. V. Kravchenko, V. M. Kysil, S. E. Tkachenko, S. Maliarchouk, I. M. Okun, and A. V. Ivanchtchenko, "Pyrrolo[3,4-c]quinoline-1,3-diones as potent caspase-3 inhibitors. Synthesis and SAR of 2-substituted 4-methyl-8-(morpholine-4-sulfonyl)-pyrrolo[3,4-c]quinoline-1,3-diones", Eur. J. Med. Chem., Vol. 40, pp. 1377-1383, 2005. https://doi.org/10.1016/j.ejmech.2005.07.011
  18. W. Chu, J. Zhang, C. Zeng, J. Rothfuss, Z. Tu, Y. Chu, D.E. Reichert, M. J. Welch, and R. H. Mach, "N-Benzylisatin sulfonamide analogues as potent caspase-3 inhibitors: Synthesis, in vitro activity and molecular modeling studies", J. Med. Chem., Vol. 48, pp. 7637-7647, 2005. https://doi.org/10.1021/jm0506625
  19. L. M. Havran, D. C. Chong, W. E. Childers, P. J. Dollings, A. Dietrich, B. L. Harrison, V. Marathias, G. Tawa, A. Aulabaugh, R. Cowling, B. Kapoor, W. Xu, L. Mosyak, F. Moy, W.-T. Hum, A. Wood, and A. J. Robichaud, "3.4-Dihydropyrimido (1, 2-a) indol-10 (2H)-ones as potent non-peptidic inhibitors of caspase-3", Bioorgan. Med. Chem., Vol. 17, pp. 7755-7768, 2009. https://doi.org/10.1016/j.bmc.2009.09.036
  20. M. Thirumurthy, K. Gugan, G. Changdev, and J. C. Segung, "QSAR analysis on PfPK7 inhibitors using HQSAR, CoMFA and CoMSIA", Medicinal Chemistry Research, Vol. 21, pp. 681-693, 2012. https://doi.org/10.1007/s00044-011-9572-x
  21. S. J. Cho and A. Tropsha, "Cross validated R2 guided region selection for comparative molecular field analysis: a simple method to achieve consistent results", J. Med. Chem., Vol. 38, pp. 1060-1066, 1995 https://doi.org/10.1021/jm00007a003
  22. G. Klebe, U. Abraham, and T. Mietzner, "Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity", J. Med. Chem., Vol. 37, pp. 4130-4146, 1994. https://doi.org/10.1021/jm00050a010
  23. S. Wold, M. Sjostrom, and L. Eriksson, "PLS regression: a basic tool of chemometrics", Chemometr. Intell. Lab., Vol. 58, pp. 109-130, 2001. https://doi.org/10.1016/S0169-7439(01)00155-1

피인용 문헌

  1. 3D-QSAR Studies on 2-(indol-5-yl)thiazole Derivatives as Xanthine Oxidase (XO) Inhibitors vol.8, pp.4, 2015, https://doi.org/10.13160/ricns.2015.8.4.258
  2. Pharmacophore-Based Comparative Molecular Similarity Indices Analysis of CRTh2 Antagonists vol.8, pp.4, 2015, https://doi.org/10.13160/ricns.2015.8.4.273
  3. Docking Study of Human Galactokinase Inhibitors vol.8, pp.4, 2015, https://doi.org/10.13160/ricns.2015.8.4.267