DOI QR코드

DOI QR Code

손상감지용 CNT 나노복합재료의 손상 감지능 및 보강효과 연구

A Study of Damage Sensing and Repairing Effect of CNT Nanocomposites

  • Kwon, Dong-Jun (Department of Materials Sciance and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Wang, Zuo-Jia (Department of Materials Sciance and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Choi, Jin-Young (Department of Materials Sciance and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Shin, Pyeong-Su (Department of Materials Sciance and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Park, Joung-Man (Department of Materials Sciance and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • Received : 2014.09.24
  • Accepted : 2014.11.11
  • Published : 2014.12.31

Abstract

탄소나노튜브(CNT)의 물성은 고분자재료의 기계적, 전도성, 열적 물성을 향상시켜주기 때문에 많은 분야에서 소재개발을 진행 중이다. 본 연구에서는 사전에 CNT 10 wt% 페이스트를 제조하여 나노입자에 대한 분산도와 나노복합재료 생산성을 높일 수 있는 기초 재료를 제조하였다. 제조된 CNT 10 wt% 페이스트를 이용하여 손상 감지용 CNT 나노복합재료를 제조하여 균열에 대한 손상감지능과 균열 보강효과에 대한 영향을 연구하였다. CNT 10 wt% 페이스트를 이용하여 제조된 CNT 1 wt% 나노복합재는 일반 CNT 파우더를 이용하여 CNT 1 wt% 나노복합재료를 제조하였을 경우보다 인장과 굴곡물성이 높음을 확인하였다. CF30wt%/PP에 인위적인 균열을 제조하고, 균열부위에 CNT 나노복합재료를 보강하여 균열 및 파괴 발생 감지능을 균열크기에 따라 전기저항 측정법과 인장물성평가를 통해 분석하였다. CNT 나노복합재료를 균열 부위에 보강하여 CF30wt%/PP의 인장물성을 분석하였을 경우, 균열보강효과가 있었다. 균열크기가 증가함에 따라 CNT 나노복합재료의 보강효과의 증가되었다. 이는 CNT 나노복합재료와 CF30wt%/PP간의 접착면 증가로 균열전파를 지연하기 때문이다. CNT 나노복합재료의 손상감지능에 대해서는 전기저항 평가법으로 분석하였으며, 접착면에서의 분리로 인해 CNT 나노복합재료에 충격이 가해져 높은 전기저항 증가구간을 확인하였다. 손상감지용 CNT 나노복합재료의 균열방지효과와 손상감지에 대한 전기저항 평가법의 가능성을 확인하였다.

Nancomposites manufacture has been developed rapidly, because of reinforcing effects of CNT in terms of mechanical, electrical and thermal properties. In this study, 10 wt% CNT paste was fabricated with good dispersion state and easy processability. Damage sensing and reinforcing effect of CNT paste were investigated in nanocomposites. 10 wt% CNT paste exhibited better tensile and flexural properties than those of general 1 wt% CNT nanocomposites. To observe the healing effect of CNT paste, a crack was made artificially with 30wt% CF30wt%/PP composites, and the CNT paste was filled inside the crack. The damage sensing of CNT paste in CF30wt%/PP composites was investigated by electrical resistance measurement and mechanical tests. CNT paste exhibited good reinforcing effect in mechanical properties of CF30wt%/PP composites, and this reinforcing effect was getting better with larger cracks. The reason was because CNT paste had good interfacial adhesion with CF30wt%/PP composites to resist crack propagation. In electrical resistance measurement, there was a jump in electrical resistance signal at the adhesion interface. The jumping signal could be used to predict fracture of CF/PP composites. CNT nanocomposites for damage sensing had crack reducing effect and damage detection using electrical resistance method.

Keywords

References

  1. Wans, Z.J., Kwon, D.J., Park, J.K., Lee, W.I., and Park, J.M., "Microstructure and Ablation Performance of CNT-phenolic Nanocomposites," Composites Research, Vol. 36, No. 5, 2013, pp. 309-314. https://doi.org/10.7234/composres.2013.26.5.309
  2. Gu, G.Y., Wang, Z.J., Kwon, D.J., and Park, J.M., "Mechanical and Electrical Properties of Electrospun CNT/PVDF Nanofiber for Micro-Actuator," Composites Research, Vol. 26, No. 1, 2013, pp. 14-20. https://doi.org/10.7234/kscm.2013.26.1.14
  3. Kwon, D.J, Wang, Z.J., Gu, G.Y., and Park, J.M., "Surface Control and Durability Evaluation of CNT and ITO Coated PET Transparent Electrode with Different Dry Conditions," Composites Research, Vol. 24, No. 1, 2011, pp. 17-22. https://doi.org/10.7234/kscm.2011.24.5.017
  4. Gu, G.Y., Wang, Z.J., Kwon, D.J., and Park, J.M., "Interfacial Durability and Acoustic Properties of Transparent xGnP/ PVDF/xGnP Graphite Composites Film for Acoustic Actuator," Composites Research, Vol. 25, No. 3, 2012, pp. 70-75. https://doi.org/10.7234/kscm.2012.25.3.070
  5. Hwang, S.H., Lee, D.W., Beak, J.B., Shin, H.S., and Park, Y.B., "Effect of Graphene Oxide on the Properties of Its Composite Fibers with PMMA and Nylon 6,6," Composites Research, Vol. 24, No. 4, 2011, pp. 1-4. https://doi.org/10.7234/kscm.2011.24.4.001
  6. Kim, H.S., Kwon, D.J., Wans, Z.J., Gu, G.Y., Kim, D.S., Lee, C.S., and Park, J.M., "Electrical Resistance Measurement in Characterizing the Internal Damage of Carbon Nanotube/Polypropylene Nanocomposites," Composites Research, Vol. 26, No. 3, 2013, pp. 201-206. https://doi.org/10.7234/composres.2013.26.3.201
  7. Hong, J.S., Lee, J.H., and Nam, Y.W., "Dispersion of Solvent-wet Carbon Nanotubes for Electrical CNT/polydimethylsiloxane Composite," Carbon, Vol. 61, 2013, pp.577-584. https://doi.org/10.1016/j.carbon.2013.05.039
  8. Varela, R.H., Bittolo, B.R., Rodriguez, P.I., Valentini, L., and Martin, G.I., "Development of Photo Micro-graph Method to Characterize Dispersion of CNT in Epoxy," Materials Science and Engineering A, Vol. 506, 2009, pp. 39-44. https://doi.org/10.1016/j.msea.2008.12.044
  9. Paul, M., and John, V., "Complete CNT Disentanglement-dispersion-functionalization in a Pulsating Micro-structured Reactor," Chemical Engineering Science, Vol. 90, 2013, pp. 10-16. https://doi.org/10.1016/j.ces.2012.12.003
  10. Paulo, E.L., Ferrie, V.H., Pereira, C.M.C., Paulo, J.R.O.N., Stefan, F., Felicitas, H., and Laurent, P., "High CNT Content Composites with CNT Buckypaper and Epoxy Resin Matrix: Impregnation Behaviour Composite Production and Characterization," Composite Structures, Vol. 92, 2010, pp. 1291-1298. https://doi.org/10.1016/j.compstruct.2009.11.003
  11. Lai, Y.T, Chen, Y.M., Liu, T., and Yang, Y.J., "A Tactile Sensing Array with Tunable Sensing Ranges Using Liquid Crystal and Carbon Nanotubes Composites," Sensors and Actuators A: Physical, Vol. 177, 2012, pp. 48-53. https://doi.org/10.1016/j.sna.2011.09.008
  12. Huang, H., and Wu, Z.S., "Static and Dynamic Measurement of Low-level Strains with Carbon Fibers," Sensors and Actuators A: Physical, Vol. 183, 2012, pp.140-147. https://doi.org/10.1016/j.sna.2012.06.006
  13. Kwon, D.J., Wang, Z.J., Gu, G.Y., Um, M.K., and Park, J.M., "Inherent and Interfacial Evaluation of Fibers/Epoxy Composites by Micromechanical Tests at Cryogenic Temperature," Journal of the Korean Society for Composite Materials, Vol. 24, No. 4, 2011, pp. 11-16. https://doi.org/10.7234/kscm.2011.24.4.011
  14. Li, W., Dichiara, A., and Bai, J., "Carbon Nanotube-graphene Nanoplatelet Hybrids as High-performance Multifunctional Reinforcements in Epoxy Composites," Composites Science and Technology, Vol. 74, 2013, pp. 221-227. https://doi.org/10.1016/j.compscitech.2012.11.015
  15. Johnson, A.C., Zhao, F.M., Hayes, S.A., and Jones, F.R., "Influence of a Matrix Crack on Stress Transfer to an Alumina Fibre in Epoxy Resin Using FEA and Photoelasticity," Composites Science and Technology, Vol. 66, 2006, pp. 2023-2029. https://doi.org/10.1016/j.compscitech.2005.12.027
  16. Bauhofer, W., and Kovacs, J.Z., "A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites," Composites Science and Technology, Vol. 69, 2009, pp. 1486-1498. https://doi.org/10.1016/j.compscitech.2008.06.018
  17. Li, L., Ma, P.C., Xu, M., Khan, S.U., and Kim, J.K., "Strain-sensitive Raman Spectroscopy and Electrical Resistance of Carbon Nanotube-coated Glass Fibre Sensors," Composites Science and Technology, Vol. 69, 2012, pp. 1548-1555.