DOI QR코드

DOI QR Code

Landslide Triggering Rainfall Threshold Based on Landslide Type

사면파괴 유형별 강우 한계선 설정

  • Received : 2014.09.02
  • Accepted : 2014.11.26
  • Published : 2014.12.31

Abstract

Most of slope failures have taken place between June and September in Korea, which cause a considerable damage to society. Rainfall intensity and duration are very significant triggering factors for landslide. In this paper, landslide-triggering rainfall threshold consisting of rainfall intensity-duration (I-D) was proposed. For this study, total 255 landslides were collected in landslide inventory during 1999 to 2012 from NDMI (National Disaster Management Institute), various reports, newspapers and field survey. And most of the required rainfall data were collected from KMA (Korea Meteorological Administration). The collected landslides were classified into three categories: debris flow, shallow landslide and unconfirmed. A rainfall threshold was proposed based on landslide type using statistical method such as quantile-regression method. Its validation was carried out based on 2013 landslide database. The proposed rainfall threshold was also compared with previous rainfall thresholds. The proposed landslide-triggering rainfall thresholds could be used in landslide early warning system in Korea.

국내 대부분의 사면파괴는 6월~9월에 발생하며, 이러한 사면파괴는 사회적으로 큰 손실을 유발한다. 사면파괴의 주요 원인은 강우강도(Intensity, I)와 강우기간(Duration, D)이다. 본 연구에서는 강우강도-기간(I-D)을 고려한 사면파괴 유발 강우 한계선(rainfall threshold)을 제안하였다. 본 연구를 위해서 국립재난안전연구원과 다양한 보고서 및 매체 그리고 현장조사를 통해서 1999년부터 2012년까지 풍화토 지반에서 유발된 255개 재해이력 자료를 수집하였다. 그리고 기상청의 강우자료를 바탕으로 사면파괴가 발생한 시점의 전 후의 시간에 대한 강우량 데이터를 수집하였다. 수집된 재해이력과 강우량 데이터베이스를 바탕으로 사면파괴를 유형별(토석류, 얕은 사면파괴 등)로 분류하고, 통계적 기법인 분위수 회귀분석을 이용하여 강우강도 및 기간을 분석함으로써 강우 한계선을 제안하였다. 뿐만 아니라 2013년의 재해이력 자료를 통해 제안된 한계선의 검증을 수행하였다. 또한 국외의 한계선과 제안된 한계선을 비교 분석하였다. 본 연구에서 제안된 강우 한계선은 산사태 예 경보시스템을 구축할 때 기초자료로 사용될 수 있다고 판단된다.

Keywords

References

  1. Aleotti, P. (2004), A warning system of rainfall-induced shallow landslide, Engineering Geology, Vol.74, pp.247-265. https://doi.org/10.1016/j.enggeo.2004.04.001
  2. Caine, N. (1980), The rainfall intensity-duration control of shallow landslides and debris flows, Physical Geography, Vol.62, pp.23-27.
  3. Cannon, S., Gartner, J., Wilson, R., Bowers, J., and Laber, J. (2008), Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California, Geomorphology, Vol.96, pp.250-269. https://doi.org/10.1016/j.geomorph.2007.03.019
  4. Chiang, S. and Chang, K. (2009), Application of radar data to modeling rainfall-induced landslides, Geomorphology, Vol.103, pp.299-309. https://doi.org/10.1016/j.geomorph.2008.06.012
  5. Chien-Yuan, C., Tien-Chien, C., Fan-Chieh, Y., Wen-Hui, Y., and Chun-Chieh, T. (2005), Rainfall duration and debris-flow initiated studies for real-time monitoring, Environmental Geology, Vol.47, pp.715-724. https://doi.org/10.1007/s00254-004-1203-0
  6. Choi, K. (1989), Landslide Prediction Methods and Prevention, KFRI Research Information Repory, No.27, pp.1-3
  7. Crosta, G. and Frattini, P. (2008), Rainfall-induced landslides and debris flows, Hydrological precesses, Vol.22, pp.473-477. https://doi.org/10.1002/hyp.6885
  8. Dahal, R. K. and Hasegawa, S. (2008), Representative rainfall thresholds for landslide in the Nepal Himalaya, Geomorphology, Vol.100, pp.429-443 https://doi.org/10.1016/j.geomorph.2008.01.014
  9. Glade, T., Crozier, M., and Smith, P. (2000), Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical "antecedent daily rainfall model", Pure and Applied Geophysics, Vol.157, pp.1059-1079. https://doi.org/10.1007/s000240050017
  10. Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. (2007), Rainfall thresholds for the initiation of landslides in central and southern Europe, Meteorology and Atmospheric Physics, Vol.98, pp.239-267. https://doi.org/10.1007/s00703-007-0262-7
  11. Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. (2008), The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides, Vol.5, pp.3-17. https://doi.org/10.1007/s10346-007-0112-1
  12. Hitoshi, S., Daichi, N., and Hiroshi, M. (2010), Relationship between the initiation of a shallow landslide and rainfall intensity-duration thresholds in japan, Geomorphology, Vol.118, pp.167-175. https://doi.org/10.1016/j.geomorph.2009.12.016
  13. Hong, W.P., Kim, Y.W., Kin, S.K., Han, J.G., and Kim, M. (1990), Prediction of Rainfall-triggering Landslides in Korea", Journal of the Korean Geotechnical Society, Vol.6, No.2, pp. 55-63.
  14. Jakob, M. and Weatherly, H. (2003), A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia. Geomorphology, Vol.54, pp.137-156. https://doi.org/10.1016/S0169-555X(02)00339-2
  15. Jibson, R. (1989), Debris flow in southern Puerto Rico. Geological Society of America Special Paper, Vol.236, pp.29-55. https://doi.org/10.1130/SPE236-p29
  16. Kim, K.S. (2008), Characteristics of Basin Topography and Rainfall Triggering Debris flow, Journal of the Korean Society of Civil Engineering, Vol.28, No.5C, pp.263-271.
  17. Kim, S.W., Jung, S.J., Choi, E.K., Kim, S.H., Lee, K.H., and Park, D.G. (2013), An Analysis of the Current Status of Disasters Occurring on the Steep Slopes in Korea, Journal of Environmental Science International, Vol.22, No.11, pp.1529-1538. https://doi.org/10.5322/JESI.2013.22.11.1529
  18. Koenker, R. and Bassett Jr, G. (1978), Regression quantiles", Econometrica: Journal of the Economic Society, Vol.46, No.1, pp.33-50. https://doi.org/10.2307/1913643
  19. Larsen, M. and Simon, A. (1993), A rainfall intensity-duration threshold for landslides in a humid-tropical environment Puerto Rico, Physical Geography, Vol.75, pp.13-23.
  20. National Institute for Disaster Prevention (2008), Study on the Applicability of an Early Warning System using Rainfall Data in Korea, Research Report, NIDP-2010-08-01, pp.7-34.
  21. National Institute for Disaster Prevention (2009), A Study on the Critical Boundaries for Domestic Application, Research Report, NIDP-2009-07-01, pp.7-45.
  22. Oh, J.R. and Park, H.J. (2013), Establishment of Landslide Rainfall Threshold for Risk Assessment in Gangwon Area, Journal of KOSHAM, Vol.13, No.3, pp.43-51. https://doi.org/10.9798/KOSHAM.2013.13.3.043
  23. Shin, H. S., Kim, Y. Y., and Park, D. K. (2013), Development of Rainfall Hazard Envelope for Unsaturated Infinite Slope, KSCE Journal of Civil Engineering, Vol.17, No.2, pp.351-356. https://doi.org/10.1007/s12205-013-1626-9
  24. Yune, C.Y., Jun, K.J., Kim, K.S., Kim, G.H., and Lee, S.W. (2010), Analysis of Slope Hazard-Triggering Rainfall Characteristics in Gangwon Province by Database Construction, Journal of the Korean Geotechnical Society, Vol.26, No.10, pp.27-38.