DOI QR코드

DOI QR Code

Seismic Fragility Functions for Steel Moment Resisting Frames using Incremental Dynamic Analyses

증분동적해석을 이용한 철골모멘트골조의 지진취약도 함수

  • Lee, Seung-Won (Department of Architectural Engineering, University of Seoul) ;
  • Yi, Waon-Ho (Department of Architectural Engineering, Kwangwoon University) ;
  • Kim, Hyung-Joon (Department of Architectural Engineering, University of Seoul)
  • Received : 2014.11.17
  • Accepted : 2014.12.02
  • Published : 2014.12.31

Abstract

Accuracy of seismic response evaluated by a capacity spectrum method (CSM) is generally known to be less than that by Incremental dynamic analysis (IDA). In this paper, a procedure for IDA based seismic fragility curves for steel moment resisting frames was suggested. This study compares seismic fragility curves using the suggested method (IDA method) with those using a CSM and intends to verify the validity of the IDA method. The shapes of both seismic fragility curves are similar in slight and moderate damage states. However, in the case of extensive and complete damage states, the fragility curves obtained from the IDA method presents a more steep slope due to less variation (or uncertainties). This is due to the fact that the IDA method can properly capture the structural response beyond yielding rather than the CSM.

일반적으로 지진취약도를 평가할 때 사용되는 해석방법 중 하나인 역량스펙트럼 방법은 증분동적해석에 비해 해석의 정확성이 떨어지는 제한점이 있다. 본 연구에서는 증분동적해석이 가장 정확도가 높은 해석기법이라는 점에 착안하여 증분동적해석을 이용한 지진취약도 곡선의 도출과정을 제안하였다. 타당성 비교를 위하여 역량스펙트럼 방법과 제안된 방법으로 도출한 취약도 곡선을 비교하여 두 해석기법에 의한 지진취약도 곡선의 경향을 분석하였다. 그 결과 Slight damage와 Moderate damage의 경우 두 해석방법이 유사한 곡선 경향을 보이나 Extensive damage와 Complete damage의 경우에는 IDA방법에 의한 곡선이 더 가파른 경향을 보였다. 이는 구조물의 거동을 이상화하여 극한점 이후 구조물의 저항 강도가 떨어지지 않는다고 가정하는 역량스펙트럼 방법의 영향을 받는 것으로 사료된다.

Keywords

References

  1. ASCE/SEI (2010) Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineering.
  2. Carr, A.J. (2009) Ruaumoko Manual. User Manual for the 2-Dimensional Version : Ruaumoko 2D Vol.2, University of Canterbury, New Zealand.
  3. Chopra, A.K. (2012) Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4th Edition, Prentice Hall, Englewood Cliffs, New Jersey, USA.
  4. FEMA (2003) HAZUS-MH MR4 Technical Manual, Multi-hazard Loss Estimation Methodology Earthquake Model, Federal Emergency Management Agency, Washington, D.C., p.712.
  5. FEMA (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA 356, Federal Emergency Management Agency, Washington, D.C., p.518.
  6. FEMA (2009) Quantification of Building Seismic Performance Factors:ATC-63 Project Report, FEMA P695, Federal Emergency Management Agency, Washington, D.C., p.421.
  7. Kircher, C.A., Nassar, A.A., Kustu, O. (1997) Development of Building Damage Functions for Earthquake Loss Estimation, Earthquake Spectra, 13(4), pp.663-682. https://doi.org/10.1193/1.1585974
  8. Park, J.N., Choi, E.S. (2007) Fragility Analysis for Evaluation and Comparison of Seismic Performance of Building Structures, J. Earthquake Eng Soc. Korea, 11(3), pp.11-21. https://doi.org/10.5000/EESK.2007.11.3.011
  9. Ramirez, O. M., Constantinou, M.C., Kircher, C.A., Whittaker, A.S., Johnson, M.W., Gomez, J.D., Chrysostomou, C.Z. (2000) Development and Evaluation of Simplified Procedures for Analysis and Design of Buildings with Passive Energy Dissipation Systems, Report No. MCEER 00-0010, Revision 1, Multidisciplinary Center for Earthquake Engineering Research, University at Buffalo, State University of New York, Buffalo, N.Y., USA.
  10. Vamvatsikos, D., Cornell, C.A. (2002) Incremental Dynamic Analysis, Earthquake Eng.& Struct. Dyn., 31(3), pp.491-514. https://doi.org/10.1002/eqe.141

Cited by

  1. Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard vol.20, pp.7 Special, 2016, https://doi.org/10.5000/EESK.2016.20.7.485
  2. Performance Assessment of Steel Moment-Resisting Frame Structures Using Fragility Methodology vol.144, pp.3, 2018, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001964